CLASS : XIth
DATE :

Solutions

SUBJECT : MATHS DPP NO. :1

TOpic :-PERMUTATIONS AND COMBINATIONS

1
(b)
$\because f\left(x_{i}\right) \neq y_{i}$
$i e$, no object goes to its scheduled place. Then, number of one-one mappings

$$
\begin{aligned}
& =6!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+\frac{1}{6!}\right) \\
& =6!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+\frac{1}{6!}\right) \\
& =360-120+30-6+1=265
\end{aligned}
$$

(d)

We have,
Required number of ways

$$
={ }^{m+n} C_{m} \times(m-1)!\times(n-1)!=\frac{(m+n)!}{m n}
$$

(a)
\because Remaining 5 can be seated in 4 ! ways.
Now, on cross marked five places 2 person can sit in ${ }^{5} P_{2}$ ways

So, number of arrangements
$=4!\times \frac{5!}{3!}$

$$
=24 \times 20=480 \text { ways }
$$

4
(a)

Given, ${ }^{2 n+1} P_{n-1}:{ }^{2 n-1} P_{n}=3: 5$
$\Rightarrow \frac{(2 n+1)!}{(n+2)!} \times \frac{(n-1)!}{(2 n-1)!}=\frac{3}{5}$
$\Rightarrow \frac{(2 n+1) 2 n}{(n+2)(n+1) n}=\frac{3}{5}$
$\Rightarrow 10(2 n+1)=3\left(n^{2}+3 n+2\right)$
$\Rightarrow 3 n^{2}-11 n-4=0$
$\Rightarrow(3 n+1)(n-4)=0$
$\Rightarrow n=4$
$\left(n \neq-\frac{1}{3}\right)$
(b)

Required number of ways

$$
\begin{aligned}
& ={ }^{4} C_{1} \times{ }^{6} C_{4}+{ }^{4} C_{2} \times{ }^{6} C_{3}+{ }^{4} C_{3} \times{ }^{6} C_{2}+{ }^{4} C_{4} \times{ }^{6} C_{1} \\
& =60+120+60+6 \\
& =246
\end{aligned}
$$

(a)

Required number of ways $={ }^{8} C_{5}$

$$
=\frac{8 \times 7 \times 6}{3 \times 2 \times 1}=56
$$

The total number of ways a voter can vote

$$
\begin{aligned}
& ={ }^{8} C_{1}+{ }^{8} C_{2}+{ }^{8} C_{3}+{ }^{8} C_{4}+{ }^{8} C_{5} \\
& =8+28+56+70+56=218
\end{aligned}
$$

(c)

From the first set, the number of ways of selection two lines $={ }^{4} C_{2}$
From the second set, the number of ways of selection two lines $={ }^{3} C_{2}$
Since, these sets are intersect, therefore they from a parallelogram,
\therefore Required number of ways $={ }^{4} C_{2} \times{ }^{3} C_{2}$

$$
=4 \times 3=12
$$

(b)

Since, a set of m parallel lines intersecting a set of another n parallel lines in a plane, then the number of parallelograms formed is ${ }^{m} C_{2} \times{ }^{n} C_{2}$.
(a)

$$
\begin{aligned}
& { }^{50} C_{4}+\sum_{r=1}^{6}{ }^{56-r} C_{3} \\
& ={ }^{50} C_{4}+{ }^{55} C_{3}+{ }^{54} C_{3}+{ }^{53} C_{3}+{ }^{52} C_{3}+{ }^{51} C_{3}+{ }^{50} C_{3} \\
& ={ }^{51} C_{4}+{ }^{51} C_{3}+{ }^{52} C_{3}+{ }^{53} C_{3}+{ }^{54} C_{3}+{ }^{55} C_{3} \\
& {\left[\because{ }^{n} C_{r}+{ }^{n} C_{r+1}={ }^{n+1} C_{r+1}\right]} \\
& ={ }^{52} C_{4}+{ }^{52} C_{3}+{ }^{53} C_{3}+{ }^{54} C_{3}+{ }^{55} C_{3} \\
& ={ }^{53} C_{4}+{ }^{53} C_{3}+{ }^{54} C_{3}+{ }^{55} C_{3} \\
& ={ }^{54} C_{4}+{ }^{54} C_{3}+{ }^{55} C_{3}={ }^{55} C_{4}+{ }^{55} C_{3}={ }^{56} C_{4}
\end{aligned}
$$

(a)

Total number of four digit numbers $=9 \times 10 \times 10 \times 10$ $=9000$

Total number of four digit numbers which divisible by 5
$=9 \times 10 \times 10 \times 2=1800$
\therefore Required number of ways $=9000-1800=7200$
(a)

Man goes from Gwalior to Bhopal in 4 ways and they come back in 3 ways.
\therefore Total number of ways $=4 \times 3=12$ ways
12 (c)
Here, we have $1 \mathrm{M}, 4 I^{\prime} \mathrm{s}, 4 S^{\prime}$ s and $2 P^{\prime} \mathrm{s}$
\therefore Total number of selections
$=(1+1)(4+1)(2+1)-1=149$
(c)

Number of lines from 6 points $={ }^{6} C_{2}=15$
Points of intersection obtained from these lines $={ }^{15} C_{2}=105$
Now, we find the number of times, the original 6 points come.
Consider one point say A_{1}.Joining A_{1} to remaiming 5 points, we get 5 lines and any two lines from these 5 lines gives A_{1} as the point of intersection.
$\therefore A_{1}$ is commom in ${ }^{5} C_{2}=10$ times out of 105 points of intersections.
Similar is the case with other five points.
$\therefore 6$ original points come $6 \times 10=60$ times in points of intersection.
Hence, the number of distinct points of intersection

$$
=105-60+6=51
$$

(b)

At first we have to a accommodate those 5 animals in cages which cannot enter in 4 small cages, therefore, number of ways are ${ }^{6} P_{5}$ and rest of the five animals arrange in 5 ! ways.

Total number of ways $=5!\times{ }^{6} P_{5}$
$=120 \times 720=86400$
(b)
$T_{n}={ }^{n} C_{3}$ and $T_{n+1}-T_{n}=21$
$\Rightarrow{ }^{n+1} C_{3}-{ }^{n} C_{3}=21$
$\Rightarrow \quad{ }^{n} C_{2}+{ }^{n} C_{3}-{ }^{n} C_{3}=21$
$\Rightarrow \quad{ }^{n} C_{2}=21$
$\Rightarrow \quad \frac{n(n-1)}{2}=21$
$\Rightarrow \quad n^{2}-n-42=0$
$\Rightarrow \quad(n-7)(n+6)=0$
$\therefore \quad n=7 \quad[\because \neq-6]$
(b)

Total number of ways
$={ }^{10} C_{1}+{ }^{10} C_{2}+{ }^{10} C_{3}+{ }^{10} C_{4}$
$=10+45+120+210=385$
(b)

The total number of two factors product $={ }^{n+2} C_{8}$. The number of numbers from 1 to 200 which are not multiples of 5 is 160 . Therefore, total number of two factors product, which are not multiple of 5 , is ${ }^{160} C_{2}$
Hence, required number of factors $={ }^{200} C_{2}-{ }^{160} C_{2}$
= 19900 - 12720
$=7180$
(b)

Total number of m-elements subsetcs of $A={ }^{n} C_{m} \ldots$ (i)
and number of m-elements subsets of A each containing the element $a_{4}={ }^{n-1} C_{m-1}$
According to question, ${ }^{n} C_{m}=\lambda .{ }^{n-1} C_{m-1}$
$\Rightarrow \frac{n}{m} \cdot{ }^{n-1} C_{m-1}=\lambda \cdot{ }^{n-1} C_{m-1}$
$\Rightarrow \lambda=\frac{n}{m}$ or $n=m \lambda$
(a)

The number of 1 digit numbers $=9$
The number of 2 digit non-repeated numbers $=9 \times 9=81$
The number of 3 digit non-repeated number
$=9 \times{ }^{9} P_{2}=9 \times 9 \times 8=648$
\therefore Required number of ways $=9+81+648=738$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | B | D | A | A | B | A | C | B | A | A |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | A | C | C | B | B | B | B | B | B | A |
| | | | | | | | | | | |

