

CLASS : XIth DATE : SUBJECT : MATHS DPP NO. :8

Topic :-linear inequalities

1.	$\log_{16} x^3 + (\log_2 \sqrt{x})^2 <$ a) (2, 16)	<pre>1 iffx lies in b) (0,1/16)</pre>	c) (1/16 ,2)	d)None of these		
2.		$0 < x < 3\pi, \text{then sin } x \text{ lie}$ b) $\left[0, \frac{\sqrt{5} - 1}{2}\right]$	s in the interval c) $\left[0, \frac{1}{2}\right]$	d)None of these		
3. rel	If $f(x) = x^2 + 2bx + 2c$ ation between <i>b</i> and <i>c</i> , i a) No real value of <i>b</i> and $ c > b \sqrt{2}$		$x + b^2$ such that min $f(x)$ $0 < c < b\sqrt{2}$	$ > \max g(x)$, then the c) $ c < b \sqrt{2}$ d)		
4. equ						
5.	The total number of ro a) 1	pots o <mark>f the</mark> equation x – b) 2	$\begin{vmatrix} x^2 - 1 \end{vmatrix} = 2x - 3 - x^2 $ c) 0	is d) Infinitely many		
6.	For $\frac{ x-1 }{x+2} < 1$, <i>x</i> lies in a) $(-\infty, -2) \cup \left(-\frac{1}{2}, -\frac{1}{2}, 1\right]$		(−∞, 1) ∪ [2, 3]	c) (− ∞, − 4) d)		
7.	Number of integer sol a) 0	utions of $\frac{x+2}{x^2+1} > \frac{1}{2}$ is b) 1	c) 2	d) 3		
8.	Solution of the inequa a) $\left(n\pi + \frac{\pi}{12}, n\pi + \frac{\pi}{6}\right)$	ality tan $\left(x + \frac{\pi}{3}\right) \ge 1$ is b) $\left(n\pi - \frac{\pi}{12}, n\pi + \frac{\pi}{6}\right)$	c) $(n\pi - \frac{\pi}{6}, n\pi - \frac{\pi}{12})$	d)None of these		
9.	If 0 < <i>a</i> < 1, then the s a) (1, 1/ <i>a</i>)	solution set of the inequation b) (0, a)	ation $\frac{1 + (\log_a x)^2}{1 + (\log_a x)} > 1$, is c) $(1, 1/a) \cup (0,a)$	d)None of these		
10	10. Let $x = \frac{a+2b}{a+b}$ and $y = \frac{a}{b}$, where <i>a</i> and <i>b</i> are positive integers. If $y^2 > 2$, then					

a) $x^2 \le 2$	b) $x^2 < 2$	c) $x^2 > 2$	d) $x^2 \ge 2$		
11. The minimum value of a) $2\sqrt{2}-1$		$\sec x + \csc x + \cot x$ c) $\sqrt{2} - 1$	$ $ is d $)\sqrt{2}$ +1		
12. If for $x \in R_{r_3}^1 < \frac{x^2 - 2x}{x^2 + 2x}$ a) $\frac{1}{2}$ and 2	$\frac{4}{4} + \frac{4}{4} < 3, \text{then} \frac{9 \cdot 3^{2x} - 6 \cdot 3^{x} + 6}{9 \cdot 3^{2x} + 6 \cdot 3^{x} + 3}$ b) $\frac{1}{3}$ and 3	$\frac{4}{4}$ lies between c) 0 and 2	d)None of these		
13. The minimum value o a) 1	of $4^x + 4^{1-x}, x \in R$, is b) 2	c) 4	d)None of these		
14. The number of real so a) 0	blutions of the equation 3 b) 1	$3^{- x } - 2^{ x } = 0$, is c) 2	d)None of these		
15. The number of real ro a) 0	bots of the equation 1 + 3 b) 1	$3^{x/2} = 2^x$, is c) 2	d)None of these		
16. If <i>n</i> is even and $n \ge 4, x_1, x_2,, x_n \ge 0$ and $x_1 + x_2 + + x_n = 1$, then $P = x_1x_2 + x_2x_3 + + x_n - x_n$ cannot exceed					
a) $\frac{1}{n+1}$	b) $\frac{1}{n+2}$	c) $\frac{1}{2n}$	d)None of these		
17. The number of real so a) 0	blutions of the equation of b) 1	$e^{-x} = x$, is c) 2	d) None of these		
18. The solution set conta a) (1, 3)	ained in <i>R</i> of the inequatible (0, 1)	ion $3^{x} + 3^{1-x} - 4 < 0$, is c) (1, 2)	d) (0, 2)		
19. The solution of the in a) $\frac{3}{2} \le x \le 3$	equation $2x^2 + 3x - 9 \le 0$ b) $-3 \le x \le \frac{3}{2}$		$d)\frac{3}{2} \le x \le 2$		
20. If $0 < \theta < \pi$, then the a) 0	minimum value of sin ⁵ θ b) 1	+ cosec ⁵ θ is c) 2	d)None of these		