CLASS : XIth
SUBJECT : MATHS
DATE :
DPP NO. :8

Topic :-IINEAR INEQUALITIES

1. $\log _{16} x^{3}+\left(\log _{2} \sqrt{x}\right)^{2}<1$ iff x lies in
a) $(2,16)$
b) $(0,1 / 16)$
c) $(1 / 16,2)$
d) None of these
2. If $\log _{\cos x} \sin x>2$ and $0<x<3 \pi$, then $\sin x$ lies in the interval
a) $\left[\frac{\sqrt{5}-1}{2}, 1\right]$
b) $\left[0, \frac{\sqrt{5}-1}{2}\right]$
c) $\left[0, \frac{1}{2}\right]$
d) None of these
3. If $f(x)=x^{2}+2 b x+2 c^{2}$ and $g(x)=-x^{2}-2 c x+b^{2}$ such that $\min f(x)>\max g(x)$, then the relation between b and c, is
a) No real value of b and c b)
$0<c<b \sqrt{2}$
c) $|c|<|b| \sqrt{2}$
$|c|>|b| \sqrt{2}$
4. If the sum of the greatest integer less than or equal to x and the least integer greater than or equal to x is 5 , then the solution set for x is
a) $(2,3)$
b) $(0,5)$
c) $[5,6)$
d) None of these
5. The total number of roots of the equation $\left|x-x^{2}-1\right|=\left|2 x-3-x^{2}\right|$ is
a) 1
b) 2
c) 0
d) Infinitely many
6. For $\frac{|x-1|}{x+2}<1, x$ lies in the interval
a) $(-\infty,-2) \cup\left(-\frac{1}{2}, \infty\right)$ b)
$(-\infty, 1) \cup[2,3]$
c) $(-\infty,-4)$
d) $\left[-\frac{1}{2}, 1\right]$
7. Number of integer solutions of $\frac{x+2}{x^{2}+1}>\frac{1}{2}$ is
a) 0
b) 1
c) 2
d) 3
8. Solution of the inequality $\tan \left(x+\frac{\pi}{3}\right) \geq 1$ is
a) $\left(n \pi+\frac{\pi}{12}, n \pi+\frac{\pi}{6}\right)$
b) $\left(n \pi-\frac{\pi}{12}, n \pi+\frac{\pi}{6}\right)$
c) $\left(n \pi-\frac{\pi}{6}, n \pi-\frac{\pi}{12}\right)$
d) None of these
9. If $0<a<1$, then the solution set of the inequation $\frac{1+\left(\log _{a} x\right)^{2}}{1+\left(\log _{a} x\right)}>1$, is
a) $(1,1 / a)$
b) $(0, a)$
c) $(1,1 / a) \cup(0, a)$
d) None of these
10. Let $x=\frac{a+2 b}{a+b}$ and $y=\frac{a}{b^{\prime}}$, wherer a and b are positive integers. If $y^{2}>2$, then
a) $x^{2} \leq 2$
b) $x^{2}<2$
c) $x^{2}>2$
d) $x^{2} \geq 2$
11. The minimum value of $|\sin x+\cos x+\tan x+\sec x+\operatorname{cosec} x+\cot x|$ is
a) $2 \sqrt{2}-1$
b) $2 \sqrt{2}+1$
c) $\sqrt{2}-1$
d) $\sqrt{2}+1$
12. If for $x \in R, \frac{1}{3}<\frac{x^{2}-2 x+4}{x^{2}+2 x+4}<3$, then $\frac{9 \cdot 3^{2 x}-6 \cdot 3^{x}+4}{9 \cdot 3^{2 x}+6 \cdot 3^{x}+4}$ lies between
a) $\frac{1}{2}$ and 2
b) $\frac{1}{3}$ and 3
c) 0 and 2
d) None of these
13. The minimum value of $4^{x}+4^{1-x}, x \in R$, is
a) 1
b) 2
c) 4
d) None of these
14. The number of real solutions of the equation $3^{-|x|}-2^{|x|}=0$, is
a) 0
b) 1
c) 2
d) None of these
15. The number of real roots of the equation $1+3^{x / 2}=2^{x}$, is
a) 0
b) 1
c) 2
d) None of these
16. If n is even and $n \geq 4, x_{1}, x_{2}, \ldots, x_{n} \geq 0$ and $x_{1}+x_{2}+\ldots+x_{n}=1$, then $P=x_{1} x_{2}+x_{2} x_{3}+\ldots+x_{n}-$ x_{n} cannot exceed
a) $\frac{1}{n+1}$
b) $\frac{1}{n+2}$
c) $\frac{1}{2 n}$
d) None of these
17. The number of real solutions of the equation $e^{-x}=x$, is
a) 0
b) 1
c) 2
d) None of these
18. The solution set contained in R of the inequation $3^{x}+3^{1-x}-4<0$, is
a) $(1,3)$
b) $(0,1)$
c) $(1,2)$
d) $(0,2)$
19. The solution of the inequation $2 x^{2}+3 x-9 \leq 0$ is given by
a) $\frac{3}{2} \leq x \leq 3$
b) $-3 \leq x \leq \frac{3}{2}$
c) $-3 \leq x \leq 3$
d) $\frac{3}{2} \leq x \leq 2$
20. If $0<\theta<\pi$, then the minimum value of $\sin ^{5} \theta+\operatorname{cosec}^{5} \theta$ is
a) 0
b) 1
c) 2
d) None of these
