

CLASS : XIth DATE : **SUBJECT : MATHS DPP NO. :4**

Topic :-linear inequalities

1.	Solution of $2x - 1 = x $ a) -2	+ 7 is b) 8	c) —2, 8	d)None of these	
2.	The number of positive a) 3	e real roots of $x^4 - 4x - b$) 2	1 = 0, is c) 1	d)0	
3.	The solution set of the a) $\left(\frac{1}{2},2\right)$	inequality $\log_{\sin(\frac{\pi}{3})}(x^2 - 3)$ b) $\left(1, \frac{5}{2}\right)$	$3x + 2) \ge 2$ is c) $\left[\frac{1}{2}, 1\right) \cup \left(2, \frac{5}{2}\right]$	d)None of these	
4.	If <i>a, b, c</i> are sides of tri a) [1, 2]	angle, then $\frac{(a+b+c)^2}{(ab+bc+ca)}$ b) [2, 3]	always belongs to c) [3, 4]	d)[4,5]	
5.	$(x-1)(x^2-5x+7) <$ a) (1, 2) \cup (3, ∞)	(x - 1), then x belongs t b) $(-\infty, 1) \cup (2, 3)$	to c) 2, 3	d)None of these	
6. sim	The set of values of <i>x</i> foultaneously, is	or which the inequalities	$5x^2 - 3x - 10 < 0, 10x - 10x - 10 < 0, 10x - 10$	$x^2 - 16 > 0$ hold	
	a) (-2, 5)	b) (2, 8)	c) (-2, 8)	d)(2,5)	
7.	The solution of the inequation $\log_{1/3}(x^2 + x + 1) + 1 < 0$ is a) $(-\infty, -2) \cup (1,\infty)$ b) $[-1, 2]$ c) $(-2, 1)$ d) $(-\infty,\infty)$				
8. = (8. The number of values of a for which the system of equation 2^x + x = y + x² + a and x² + y² = 1 has only one solution where <i>a</i>,<i>x</i>,<i>y</i> are real, is a) 1 b) 2 c) Finitely many but more than 2 d) Infinitely many 				

9. The solution set of the inequation $\log_{1/3} (x^2 + x + 1) + 1 > 0$, is a) $(-\infty, -2) \cup (1,\infty)$ b) [-1, 2] c) (-2, 1) d) *R*

- 10. The set of all real numbers satisfying the inequation $x^{(\log_{10} x)^2 3(\log_{10} x) + 1} > 1000$, is a) (0, 1000) b) (1000, ∞) c) (0, 100) d) None of these
- 11. The set of all real *x* satisfying the inequality $\frac{3 |x|}{4 |x|} > 0$ a) [-3, 3] \cup (- ∞ , -4) \cup (4, ∞) b) (- ∞ , -4) \cup (4, ∞) c) (- ∞ , -3) \cup (4, ∞) d) (- ∞ , -3) \cup (3, ∞)
- 12. For positive real number *a,b,c* which of the following holds? a) $a + b + c > 3 \Rightarrow a^2 + b^2 + c^2 > 3$ b) $a^6 + b^6 \le 12a^2b^2 - 64$ c) $a + b + c = \alpha \Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \le \frac{9}{\alpha}$ d) None of the above
- 13. If a_1, a_2, a_3 be any positive real numbers, then which of the following statements is not true a) $3a_1, a_2, a_3 \le a_1^3 + a_2^3 + a_3^3$
 - b) $\frac{a_1}{a_2} + \frac{a_2}{a_3} + \frac{a_3}{a_1} \ge 3$ c) $(a_1 + a_2 + a_3) \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3}\right) \ge 9$ d) $(a_1 + a_2 + a_3) \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3}\right)^3 \le 27$
- 14. If $x^2 + \frac{1}{x^2} = A$ and $x \frac{1}{x} = B$, where $x \in R$ and B > 0, then the minimum value of $\frac{A}{B}$ is a) $\sqrt{2}$ b) $2\sqrt{2}$ c) $\sqrt{2} + 2$ d) None of these
- 15. Let *n* be an odd positive integer. Then, the number of real roots of the polynomial $P_n(x)$ = 1 + 2x + 3x² + + (n + 1)xⁿ, is a) 0 b) n c) 1 d) None of these

16. The number of positive integers satisfying the inequality $n + 1_{C_{n-2}} - n + 1_{C_{n-1}} \le 50$ is a) 9 b) 8 c) 7 d) 6

17. For $\theta > \pi/3$, the value of $f(\theta) = \sec^2 \theta + \cos^2 \theta$ always lies in the interval a) (0, 2) b) [0, 1] c) (1, 2) d) [2, ∞)

18. If the product of *n* positive numbers is n^n , then their sum is a) A positive integer b) Divisible by *n* c) Equal to $n + \frac{1}{n}$ d) Never less than n^2

19. $\log_2 (x^2 - 3x + 18) < 4$, then x belongs toa) (1, 2)b) (2, 16)c) (1, 16)d) None of these

20. If $[x]^2 = [x + 6]$, where [x] = the greatest integer less than or equal to *x*, then *x* must be such that

a) x = 3, -2b) $x \in [-2, -1)$ c) $x \in [3, 4)$ d) $x \in [-2, -1)$ U [3, 4)