CLASS : XIth
SUBJECT : MATHS
DATE :
DPP NO. :4

Topic :-LINEAR INEQUALITIES

1. Solution of $2 x-1=|x+7|$ is
a) -2
b) 8
c) $-2,8$
d) None of these
2. The number of positive real roots of $x^{4}-4 x-1=0$, is
a) 3
b) 2
c) 1
d) 0
3. The solution set of the inequality $\log _{\sin \left(\frac{\pi}{3}\right)}\left(x^{2}-3 x+2\right) \geq 2$ is
a) $\left(\frac{1}{2}, 2\right)$
b) $\left(1, \frac{5}{2}\right)$
c) $\left[\frac{1}{2}, 1\right) \cup\left(2, \frac{5}{2}\right]$
d) None of these
4. If a, b, c are sides of triangle, then $\frac{(a+b+c)^{2}}{(a b+b c+c a)}$ always belongs to
a) $[1,2]$
b) $[2,3]$
c) $[3,4]$
d) $[4,5]$
5. $(x-1)\left(x^{2}-5 x+7\right)<(x-1)$, then x belongs to
a) $(1,2) \cup(3, \infty)$
b) $(-\infty, 1) \cup(2,3)$
c) 2,3
d) None of these
6. The set of values of x for which the inequalities $x^{2}-3 x-10<0,10 x-x^{2}-16>0$ hold simultaneously, is
a) $(-2,5)$
b) $(2,8)$
c) $(-2,8)$
d) $(2,5)$
7. The solution of the inequation $\log _{1 / 3}\left(x^{2}+x+1\right)+1<0$ is
a) $(-\infty,-2) \cup(1, \infty)$
b) $[-1,2]$
c) $(-2,1)$
d) $(-\infty, \infty)$
8. The number of values of a for which the system of equation $2^{|x|}+|x|=y+x^{2}+a$ and $x^{2}+y^{2}$ $=1$ has only one solution where a, x, y are real, is
a) 1
b) 2
c) Finitely many but more than 2
d) Infinitely many
9. The solution set of the inequation $\log _{1 / 3}\left(x^{2}+x+1\right)+1>0$, is
a) $(-\infty,-2) \cup(1, \infty)$
b) $[-1,2]$
c) $(-2,1)$
d) R
10. The set of all real numbers satisfying the inequation $x^{\left(\log _{10} x\right)^{2}-3\left(\log _{10} x\right)+1}>1000$, is
a) $(0,1000)$
b) $(1000, \infty)$
c) $(0,100)$
d) None of these
11. The set of all real x satisfying the inequality $\frac{3-|x|}{4-|x|}>0$
a) $[-3,3] \cup(-\infty,-4) \cup(4, \infty)$
b) $(-\infty,-4) \cup(4, \infty)$
c) $(-\infty,-3) \cup(4, \infty)$
d) $(-\infty,-3) \cup(3, \infty)$
12. For positive real number a, b, c which of the following holds?
a) $a+b+c>3 \Rightarrow a^{2}+b^{2}+c^{2}>3$
b) $a^{6}+b^{6} \leq 12 a^{2} b^{2}-64$
c) $a+b+c=\alpha \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{9}{\alpha}$
d) None of the above
13. If a_{1}, a_{2}, a_{3} be any positive real numbers, then which of the following statements is not true
a) $3 a_{1}, a_{2}, a_{3} \leq a_{1}^{3}+a_{2}^{3}+a_{3}^{3}$
b) $\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{1}} \geq 3$
c) $\left(a_{1}+a_{2}+a_{3}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right) \geq 9$
d) $\left(a_{1}+a_{2}+a_{3}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right)^{3} \leq 27$
14. If $x^{2}+\frac{1}{x^{2}}=A$ and $x-\frac{1}{x}=B$, where $x \in R$ and $B>0$, then the minimum value of $\frac{A}{B}$ is
a) $\sqrt{2}$
b) $2 \sqrt{2}$
c) $\sqrt{2}+2$
d) None of these
15. Let n be an odd positive integer. Then, the number of real roots of the polynomial $P_{n}(x)$ $=1+2 x+3 x^{2}+\ldots \ldots+(n+1) x^{n}$, is
a) 0
b) n
c) 1
d) None of these
16. The number of positive integers satisfying the inequality $n+1_{C_{n-2}}-n+1_{C_{n-1}} \leq 50$ is
a) 9
b) 8
c) 7
d) 6
17. For $\theta>\pi / 3$, the value of $f(\theta)=\sec ^{2} \theta+\cos ^{2} \theta$ always lies in the interval
a) $(0,2)$
b) $[0,1]$
c) $(1,2)$
d) $[2, \infty)$
18. If the product of n positive numbers is n^{n}, then their sum is
a) A positive integer
b) Divisible by n
c) Equal to $n+\frac{1}{n}$
d) Never less than n^{2}
19. $\log _{2}\left(x^{2}-3 x+18\right)<4$, then x belongs to
a) $(1,2)$
b) $(2,16)$
c) $(1,16)$
d) None of these
20. If $[x]^{2}=[x+6]$, where $[x]=$ the greatest integer less than or equal to x, then x must be such that
a) $x=3,-2$
b) $x \in[-2,-1)$
c) $x \in[3,4)$
d) $x \in[-2,-1)$

$$
\cup[3,4)
$$

