

CLASS: XIth DATE:

Solutions

SUBJECT: MATHS DPP NO.:9

1. If (1, a), (b, 2) are conjugate points with respect to the circle $x^2 + y^2 = 25$, then 4a + 2b is equal to

a) 25

b)50

c) 100

d) 150

The equation $(10x - 5)^2 + (10y - 4)^2 = (3x + 4y - 1)^2$ represents

a) A circle

b) A pair of straight lines

c) An ellipse

d) A parabola

The difference in focal distances of any point on the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ is

a)8

b)9

The chord of contact of tangents drawn from any point on x-1=0 to $y^2-6y+4x+9=0$ passes through the point

- a) (-1,3)
- b) (1, -3)
- c) (3, -1)
- d)(3.1)

5. The equation of the circle passing through (4, 5) and having the centre (2, 2), is

a)
$$x^2 + y^2 + 4x + 4y - 5 = 0$$

b)
$$x^2 + y^2 - 4x - 4y - 5 = 0$$

c)
$$x^2 + y^2 - 4x = 13$$

d)
$$x^2 + y^2 - 4x - 4y + 5 = 0$$

6. The product of lengths of perpendicular from any point on the hyperbola $x^2 - y^2 = 8$ to its asymptotes is

a)8

b)6

c) 2

d)4

7. The foci of an ellipse are $(0, \pm 4)$ and the equations for the directrices are $y = \pm 9$. The equation for the ellipse is

- a) $5x^2 + 9y^2 = 4$

- b) $2x^2 6y^2 = 28$ c) $6x^2 + 3y^2 = 45$ d) $9x^2 + 5y^2 = 180$

Tangents at any points on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ cut the axes at A and B respectively. If the rectangle *OAPB*, where O is the origin is completed, then locus of point *P* is given by

- a) $\frac{a^2}{r^2} \frac{b^2}{r^2} = 1$
- b) $\frac{a^2}{v^2} + \frac{b^2}{v^2} = 1$ c) $\frac{a^2}{v^2} \frac{b^2}{v^2} = 1$
- d) None of these

9. Let P be the point (1,0) and Q a point on the locus of $y^2 = 8x$, The locus of mid point of PQ is

- a) $x^2 4y + 2 = 0$ b) $x^2 + 4y + 2 = 0$ c) $y^2 + 4x + 2 = 0$ d) $y^2 4x + 2 = 0$

10. The equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents an ellipse if

a) $\Delta = 0, h^2 < ab$ b) $\Delta \neq 0, h^2 < ab$ c) $\Delta \neq 0, h^2 > ab$

 $d\Delta \neq 0.h^2 = ab$

11. If the lengths of major and semi-minor axes of an ellipse are 4 and $\sqrt{3}$ and their corresponding equations are y - 5 = 0 and x + 3 = 0, then the equation of the ellipse is

a) $3x^2 + 4y^2 + 18x - 40y + 115 = 0$

b) $4x^2 - 3y^2 - 24x + 30y + 99 = 0$

c) $3x^2 - 4v^2 - 18x + 40v + 115 = 0$

d) $4x^2 + 3y^2 + 24x - 30y + 99 = 0$

12. The pole of the straight line 9x + y - 28 = 0 with respect to the circle $2x^2 + 2y^2$ -3x + 5y - 7 = 0 is

a) (3,1)

b)(1,3)

c) (3, -1)

d)(-3.1)

13. The locus of middle points of chords of hyperbola $3x^2 - 2y^2 + 4x - 6y = 0$ parallel to y = 2x is

a) 3x - 4y = 4

b) 3y - 4x + 4 = 0 c) 4x - 3y = 3

14. If the circle $x^2 + y^2 - 10x - 14y + 24 = 0$ cuts an intercepts on y-axis of length

a) 5

b) 10

c) 1

d) None of these

15. The locus of a point $P(\alpha,\beta)$ moving under the condition that the line $y = \alpha x + \beta$ is a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, is

a) A hyperbola

b) A parabola

c) A circle

d) An ellipse

16. If y_1 , y_2 and y_3 are the ordinates of the vertices of a triangle inscribed in the parabola $y^2 = 4ax$, then its area is

a) $\frac{1}{2a}(y_1 - y_2)(y_2 - y_3)(y_3 - y_1)$

b) $\frac{1}{4a}(y_1-y_2)(y_2-y_3)(y_3-y_1)$

c) $\frac{1}{90}(y_1-y_2)(y_2-y_3)(y_3-y_1)$

d) None of the above

17. A variable tangent to the parabola $y^2 = 4ax$ meets the parabola $y^2 = -4ax$ at P and Q. The locus of the mid-point of *PQ* is

a) $v^2 = -2ax$

b) $y^2 = -ax$ c) $y^2 - \frac{4}{3}ax$ d) $y^2 = -4ax$

18. *P* is a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, *N* is the foot of the perpendicular from *P* on the transverse axis. The tangent to the hyperbola at *P* meets the transverse axis at *T*. If *O* is the centre of the hyperbola, then $OT \cdot ON$ is equal to

a) e^2

b) a^2

c) b^2

d) b^2/a^2

19. If the eccentricity of the hyperbola $x^2-y^2\sec^2\theta=4$ is $\sqrt{3}$ times the eccentricity of the ellipse $x^2\sec^2\theta+y^2=16$, then the value of θ equals

a) $\frac{\pi}{6}$

b) $\frac{3\pi}{4}$

c) $\frac{\pi}{3}$

d) $\frac{\pi}{2}$

20. If two circles of the same radius r and centres at (2, 3) and (5, 6) respectively cut orthogonally, then the value of r is

a) 3

b) 2

c) 1

d)5

