CLASS : XIth
DATE :

Topic :- conic section

1. If $(1, a),(b, 2)$ are conjugate points with respect to the circle $x^{2}+y^{2}=25$, then $4 a+2 b$ is equal to
a) 25
b) 50
c) 100
d) 150
2. The equation $(10 x-5)^{2}+(10 y-4)^{2}=(3 x+4 y-1)^{2}$ represents
a) A circle
b) A pair of straight lines
c) An ellipse
d) A parabola
3. The difference in focal distances of any point on the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ is
a) 8
b) 9
c) 0
d) 6
4. The chord of contact of tangents drawn from any point on $x-1=0$ to $y^{2}-6 y+4 x+9=0$ passes through the point
a) $(-1,3)$
b) $(1,-3)$
c) $(3,-1)$
d) $(3,1)$
5. The equation of the circle passing through $(4,5)$ and having the centre $(2,2)$, is
a) $x^{2}+y^{2}+4 x+4 y-5=0$
b) $x^{2}+y^{2}-4 x-4 y-5=0$
c) $x^{2}+y^{2}-4 x=13$
d) $x^{2}+y^{2}-4 x-4 y+5=0$
6. The product of lengths of perpendicular from any point on the hyperbola $x^{2}-y^{2}=8$ to its asymptotes is
a) 8
b) 6
c) 2
d) 4
7. The foci of an ellipse are $(0, \pm 4)$ and the equations for the directrices are $y= \pm 9$. The equation for the ellipse is
a) $5 x^{2}+9 y^{2}=4$
b) $2 x^{2}-6 y^{2}=28$
c) $6 x^{2}+3 y^{2}=45$
d) $9 x^{2}+5 y^{2}=180$
8. Tangents at any points on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ cut the axes at A and B respectively. If the rectangle $O A P B$, where 0 is the origin is completed, then locus of point P is given by
a) $\frac{a^{2}}{x^{2}}-\frac{b^{2}}{y^{2}}=1$
b) $\frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=1$
c) $\frac{a^{2}}{y^{2}}-\frac{b^{2}}{x^{2}}=1$
d) None of these
9. Let P be the point $(1,0)$ and Q a point on the locus of $y^{2}=8 x$, The locus of mid point of PQ is
a) $x^{2}-4 y+2=0$
b) $x^{2}+4 y+2=0$
c) $y^{2}+4 x+2=0$
d) $y^{2}-4 x+2=0$
10. The equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents an ellipse if
a) $\Delta=0, h^{2}<a b$
b) $\Delta \neq 0, h^{2}<a b$
c) $\Delta \neq 0, h^{2}>a b$
d) $\Delta \neq 0, h^{2}=a b$
11. If the lengths of major and semi-minor axes of an ellipse are 4 and $\sqrt{3}$ and their corresponding equations are $y-5=0$ and $x+3=0$, then the equation of the ellipse is
a) $3 x^{2}+4 y^{2}+18 x-40 y+115=0$
b) $4 x^{2}-3 y^{2}-24 x+30 y+99=0$
c) $3 x^{2}-4 y^{2}-18 x+40 y+115=0$
d) $4 x^{2}+3 y^{2}+24 x-30 y+99=0$
12. The pole of the straight line $9 x+y-28=0$ with respect to the circle $2 x^{2}+2 y^{2}$ $-3 x+5 y-7=0$ is
a) $(3,1)$
b) $(1,3)$
c) $(3,-1)$
d) $(-3,1)$
13. The locus of middle points of chords of hyperbola $3 x^{2}-2 y^{2}+4 x-6 y=0$ parallel to $y=2 x$ is
a) $3 x-4 y=4$
b) $3 y-4 x+4=0$
c) $4 x-3 y=3$
d) $3 x-4 y=2$
14. If the circle $x^{2}+y^{2}-10 x-14 y+24=0$ cuts an intercepts on y-axis of length
a) 5
b) 10
c) 1
d) None of these
15. The locus of a point $P(\alpha, \beta)$ moving under the condition that the line $y=\alpha x+\beta$ is a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, is
a) A hyperbola
b) A parabola
c) A circle
d) An ellipse
16. If y_{1}, y_{2} and y_{3} are the ordinates of the vertices of a triangle inscribed in the parabola $y^{2}=4 a x$, then its area is
a) $\frac{1}{2 a}\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)$
b) $\frac{1}{4 a}\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)$
c) $\frac{1}{8 a}\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)$
d) None of the above
17. A variable tangent to the parabola $y^{2}=4 a x$ meets the parabola $y^{2}=-4 a x$ at P and Q. The locus of the mid-point of $P Q$ is
a) $y^{2}=-2 a x$
b) $y^{2}=-a x$
c) $y^{2}-\frac{4}{3} a x$
d) $y^{2}=-4 a x$
18. P is a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, N$ is the foot of the perpendicular from P on the transverse axis. The tangent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then $O T \cdot O N$ is equal to
a) e^{2}
b) a^{2}
c) b^{2}
d) b^{2} / a^{2}
19. If the eccentricity of the hyperbola $x^{2}-y^{2} \sec ^{2} \theta=4$ is $\sqrt{3}$ times the eccentricity of the ellipse $x^{2} \sec ^{2} \theta+y^{2}=16$, then the value of θ equals
a) $\frac{\pi}{6}$
b) $\frac{3 \pi}{4}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{2}$
20. If two circles of the same radius r and centres at $(2,3)$ and $(5,6)$ respectively cut orthogonally, then the value of r is
a) 3
b) 2
c) 1
d) 5

