CLASS : XIth
DATE :

Solutions

Topic :- conic section

1
(b)

Equation of circle is
$x^{2}+y^{2}=25$
Polar equation of a circle with respect to the point $(1, a)$ and $(b, 2)$ is
$x+a y=25$
and $b x+2 y=25 \quad$...(iii)
since, $(1, a)$ and $(b, 2)$ are the conjugate point of a circle, therefore point $(1, a)$ satisfy the Eq. (iii), we get
$b+2 a=25 \Rightarrow 2 b+4 a=50$
3

(a)

Given, $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
We know that the difference of focal distances of any point of the hyperbola is equal to major axis
\therefore Required distance $=2 a=2 \times 4=8$

4
(a)

We have,
$y^{2}-6 y+4 x+9=0 \Rightarrow(y-3)^{2}=-4(x-0)$
The coordinate of the focus of this parabola are $(-1,3)$ and the equation of the directrix is

$$
x-1=0
$$

We know that the chord of contact of tangents drawn from any point on the directrix always passes through the focus.
Hence, the required point is $(-1,3)$
ALITER Let $P(1, \lambda)$ be an arbitrary point on $x-1=0$. The chord of contact of tangents drawn from
$P(1, \lambda)$ to the parabola $y^{2}-6 y+4 x+9=0$ is
$\lambda y-3(y+\lambda)+2(x+1)+9=0$
$\Rightarrow(2 x-3 y+11)+\lambda(y-3)=0$
Clearly, it represents a family of lines passing through the intersection of the lines
$2 x-3 y+11=0$ and $y-3=0$ i.e. $(-1,3)$
5
(b)

Equation of circle whose centre is at $(2,2)$ and radius r is
$(x-2)^{2}+(y-2)^{2}=r^{2}$
This circle passes through $(4,5)$, then
$(4-2)^{2}+(5-2)^{2}=r^{2}$
$\Rightarrow r^{2}=13$
On putting this values in Eq. (i), we get
$(x-2)^{2}+(y-2)^{2}-13=0$
$\Rightarrow x^{2}+y^{2}-4 x-4 y-5=0$
6
(d)

The equations of asymptotes of $x^{2}-y^{2}=8$ are given by
$x^{2}-y^{2}=0$ or, $x+y=0$ and $x-y=0$
Let $\left(x_{1}, y_{1}\right)$ be a point on the hyperbola $x^{2}-y^{2}=8$. Then, product of perpendicular from $\left(x_{1}, y_{1}\right)$ on the asymptotes
$=\left|\frac{x_{1}-y_{1}}{\sqrt{2}}\right|\left|\frac{x_{1}+y_{1}}{\sqrt{2}}\right|$
$=\left|\frac{x_{1}^{2}-y_{1}^{2}}{2}\right|=\left|\frac{8}{2}\right|=4 \quad\left[\because x_{1}^{2}-y_{1}^{2}=8\right]$
7
(d)

Given foci of ellipse are $(0,-4)$ and $(0,4)$
\therefore Focal distance is $2 b e=8$

$$
\begin{equation*}
b e=4 \tag{i}
\end{equation*}
$$

Also, since equation of directrices are $\frac{b}{e}= \pm 9$...(ii)
From, Eqs. (i) and (ii), we get
$b^{2}=36 \Rightarrow b=6$ and $e=\frac{2}{3}$
$\because a^{2}=b^{2}\left(1-e^{2}\right)=36\left(1-\frac{4}{9}\right)=20$
$\therefore \frac{x^{2}}{20}+\frac{y^{2}}{36}=1$
$\Rightarrow 9 x^{2}+5 y^{2}=180$
8 (a)
The equation of tangent is
$\frac{x}{a} \sec \theta-\frac{y}{b} \tan \theta=1$
\therefore Coordinates of A and B are $(a \cos \theta, 0)$ and $(0,-b \cot \theta)$ respectively.
Let coordinates of P are (h, k).
$\therefore h=a \cos \theta, k=-b \cot \theta$
$\Rightarrow \frac{k}{h}=-\frac{b}{a \sin \theta}$
$\Rightarrow \sin \theta=-\frac{b h}{a k}$
$\Rightarrow \frac{b^{2} h^{2}}{a^{2} k^{2}}=\sin ^{2} \theta$
$\Rightarrow \frac{b^{2} h^{2}}{a^{2} k^{2}}+\frac{h^{2}}{a^{2}}=1$
$\Rightarrow \frac{b^{2}}{k^{2}}+1=\frac{a^{2}}{h^{2}}$
$\Rightarrow \frac{a^{2}}{h^{2}}-\frac{b^{2}}{k^{2}}=1$
Hence, the locus of P is $\frac{a^{2}}{x^{2}}-\frac{b^{2}}{y^{2}}=1$
9 (d)
The coordinates of P are (1,0). A gerneral point Q on $y^{2}=8 x$ is $\left(2 t^{2}, 4 t\right)$. Let mid point of $P Q$ is (h, k)
$\therefore 2 h=2 t^{2}+1$ and $2 k=4 t \Rightarrow t=\frac{k}{2}$
$\therefore 2 h=\frac{2 k^{2}}{4}+1 \Rightarrow 4 h=k^{2}+2$
Hence, the locus of (h, k) is $y^{2}-4 x+2=0$

11
 (a)

The equation of the ellipse is
$\frac{(x+3)^{2}}{2^{2}}+\frac{(y-5)^{2}}{(\sqrt{3})^{2}}=1$
$\Rightarrow 3 x^{2}+4 y^{2}+18 x-40 y+115=0$
12
(c)

Let (h, k) be the pole of the line $9 x+y-28=0$ with respect to the circle $x^{2}+y^{2}-\frac{3}{2} x+\frac{5}{2} y-\frac{7}{2}=0$.
Then, the equation of the polar is
$h x+k y-\frac{3}{4}(x+h)+\frac{5}{4}(y+k)-\frac{7}{2}=0$
$\Rightarrow x\left(h-\frac{3}{4}\right)+y\left(k+\frac{5}{4}\right)-\frac{3}{4} h+\frac{5}{4} k-\frac{7}{2}=0$
$\Rightarrow x(4 h-3)+y(4 k+5)-3 h+5 k-14=0$
This equation and $9 x+y-28=0$ represent the same line.
$\therefore \frac{4 h-3}{9}=\frac{4 k+5}{1}=\frac{-3 h+5 k-14}{-28}=\lambda$ (say)
$\Rightarrow h=\frac{3+9 \lambda}{4}, k=\frac{\lambda-5}{4},-3 h+5 k-14=-28 \lambda$
$\Rightarrow-3\left(\frac{3+9 \lambda}{4}\right)+5\left(\frac{\lambda-5}{4}\right)-14=-28 \lambda$
$\Rightarrow-9-27 \lambda+5 \lambda-25-56=-112 \lambda$
$\Rightarrow-22 \lambda-90=-112 \lambda$
$\Rightarrow 90 \lambda=90 \Rightarrow \lambda=1$
Hence, the pole of the given line is $(3,-1)$
13
(a)

Let (h, k) is mid point of chord.
Then, its equation is $T=S_{1}$
$\therefore 3 h x-2 k y+2(x+h)-3(y+k)=3 h^{2}-2 k^{2}+4 h-6 k$
$x(3 h+2)+y(-2 k-3)=3 h^{2}-2 k^{2}+2 h-3 k$
Since, this line is parallel to $y=2 x$
$\frac{3 h+2}{2 k+3}=2$
$\Rightarrow 3 h-4 k=4$
Thus, locus of point is $3 x-4 y=4$

14
 (b)

If circle $x^{2}+y^{2}-10 x-14 y+24=0$ cuts an intercept on y-axis, then Length of intercept $=2 \sqrt{f^{2}-c}=2 \sqrt{49-24}=10$
15
(a)

Given line $y=a x+\beta$ is a tangent to given hyperbola, if $\beta^{2}=a^{2} \alpha^{2}-b^{2}$
Hence, locus of (α, β) is $y^{2}=a^{2} x^{2}-b^{2}$, which represents a hyperbola
16
(c)

Let the points are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$
$\therefore y_{1}^{2}=4 a x_{1}, y_{2}^{2}=4 a x_{2}, y_{3}^{2}=4 a x_{3}$
\therefore Area of triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$
$=\frac{1}{2}\left\|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right\|=\frac{1}{2}\left\|\frac{y_{1}^{2}}{4 a} y_{1} \quad 1\right\| \frac{y_{2}^{2}}{4 a} y_{2} \quad 1\left\|=\frac{1}{8 a}\right\| \frac{y_{3}^{2}}{4 a} y_{3} \quad 1\left\|\begin{array}{lll}y_{1}^{2} & y_{1} & 1 \\ y_{2}^{2} & y_{2} & 1 \\ y_{3}^{2} & y_{3} & 1\end{array}\right\|$
\Rightarrow Area of triangle
$=\frac{1}{8 a}\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)$
17
(c)

Let $y=m x+\frac{a}{m}$ be a tangent to $y^{2}=4 a x$ cutting $y^{2}=-4 a x$ at P and Q. Let (h, k) be mid-point of $P Q$.
Then, equation of $P Q$ is
$k y+2 a(x+h)=k^{2}+4 a h \quad\left[\right.$ Using :T $\left.=S^{\prime}\right]$
or, $k y=-2 a x+k^{2}+2 a h$
But, equation of $P Q$ is
$y=m x+\frac{a}{m}$
$\therefore m=-\frac{2 a}{k}$ and $\frac{k^{2}+2 a h}{k}=\frac{a}{m}$
$\Rightarrow-\frac{2 a}{k}\left(k^{2}+2 a h\right)=a k$
$\Rightarrow-2\left(k^{2}+2 a h\right)=k^{2} \Rightarrow 3 k^{2}+4 a h=0$
Hence, the locus of (h, k) is $3 y^{2}+4 a x=0$ or, $y^{2}=-\frac{4 a}{3} x$

18
 (b)

Let $P\left(x_{1}, y_{1}\right)$ be a point on the hyperbola. Then the coordinates of N are $\left(x_{1}, 0\right)$
The equation of the tangent at $\left(x_{1}, y_{1}\right)$ is $\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1$
This meets x-axis at $T\left(\frac{a^{2}}{x_{1}}, 0\right)$
\therefore OT.ON $=\frac{a^{2}}{x_{1}} \times x_{1}=a^{2}$
20 (a)
The equation of circles whose radius is r and centres $(2,3)$ and $(5,6)$ is
$(x-2)^{2}+(y-3)^{2}=r^{2}$
And $(x-5)^{2}+(y-6)^{2}=r^{2}$
$\Rightarrow x^{2}+y^{2}-4 x-6 y+\left(-r^{2}+13\right)=0$
And $x^{2}+y^{2}-10 x-12 y+\left(-r^{2}+61\right)=0$
Since, circles cut orthogonally, then
$2 \mathrm{~g}_{1} \mathrm{~g}_{2}+2 f_{1} f_{2}=c_{1}+c_{2}$
$\Rightarrow 2(2)(5)+2(3)(6)=13-r^{2}+61-r^{2}$
$\Rightarrow 2 r^{2}=18 \Rightarrow r=3$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | B | C | A | A | B | D | D | A | D | B |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | A | C | A | B | A | C | C | B | B | A |
| | | | | | | | | | | |

