

CLASS : XIth DATE :

Solutions

SUBJECT : MATHS DPP NO. : 8

Topic:-conic section

1. For an equilateral triangle the centre is the origin and the length of altitude is*a*. Then, the equation of the circumcircle is

a) $x^2 + y^2 = a^2$ b) $3x^2 + 3y^2 = 2a^2$ c) $x^2 + y^2 = 4a^2$ d) $9x^2 + 9y^2 = 4a^2$

2. the tangents drawn from the ends of latusrectum of
$$y^2 = 12x$$
 meets at
a) Directrixb) Vertexc) Focusd) None of these

3. If *B* and *B*' are the ends of minor axis and *S* and *S*' are the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$, then area of the rhombus *SBS'B*' will be

a) 12. sq. units b) 48 sq. units c) 24 sq. units d) 36 sq. units

4. A point *P* moves so that sum of its distances from (-ae, 0) and (ae, 0) is 2*a*. Then, the locus of *P* is

a)
$$\frac{x^2}{a^2} - \frac{x^2}{a^2(1-e^2)} = 1$$
 b) $\frac{x^2}{a^2} + \frac{y^2}{a^2(1-e^2)} = 1$ c) $\frac{x^2}{a^2} + \frac{y^2}{a^2(1+e^2)} = 1$ d) $\frac{x^2}{a^2} - \frac{y^2}{a^2(1+e^2)} = 1$

5. Tangents are drawn from the point on the line x - y - 5 = 0 to $x^2 + 4y^2 = 4$, then all the chords of contact pass through a fixed point, whose coordinates are a) $\left(\frac{1}{5}, \frac{4}{5}\right)$ b) $\left(\frac{4}{5}, \frac{1}{5}\right)$ c) $\left(-\frac{4}{5}, -\frac{1}{5}\right)$ d) $\left(\frac{4}{5}, -\frac{1}{5}\right)$

(5, 5) (5, 5) (5, 5) (5, 5) (5, 5)

6. If the chord y = mx + c subtends a right angle at the vertex of the parabola $y^2 = 4 ax$, then the value of *c* is

a) -4am b) 4am c) -2am d) 2am

7. If the chord of contact of tangents drawn from a point on the circle $x^2 + y^2 = a^2$ to the circle $x^2 + y^2 = b^2$ touches the circle $x^2 + y^2 = c^2$, then *a*, *b*, *c* are in a) AP b) GP c) HP d) None of these

8. The length of the subnormal to the parabola $y^2 = 4 ax$ at any point is equal to a) $a\sqrt{2}$ b) $2\sqrt{2} a$ c) $a/\sqrt{2}$ d) 2a

9. If *P* is a point such that the ratio of the tangents from *P* to the circles $x^2 + y^2 + 2x - 4y - 20 = 0$ and $x^2 + y^2 - 4x + 2y - 44 = 0$ is 2 :3, then the locus of *P* is a circle with centre a) (7, -8) b) (-7, 8) c) (7, 8) d) (-7, -8) 10. The intercepts on the line y = x by the circle $x^2 + y^2 - 2x = 0$ is *AB*. Equation of the circle on *AB* as a diameter is

a) $x^{2} + y^{2} - x - y = 0$ b) $x^{2} + y^{2} - x + y = 0$ c) $x^{2} + y^{2} + x + y = 0$ d) $x^{2} + y^{2} + x - y = 0$

11. The equation of the normal at the point ($a \sec \theta$, $b \tan \theta$) of the curve $b^2 x^2 - a^2 y^2 = a^2 b^2$ is

a) $\frac{ax}{\cos\theta} + \frac{by}{\sin\theta} = a^2 + b^2$ b) $\frac{ax}{\tan\theta} + \frac{by}{\sec\theta} = a^2 + b^2$ c) $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 + b^2$ d) $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 - b^2$

12. The equation of normal to the circle $2x^2 + 2y^2 - 2x - 5y + 3 = 0$ at (1, 1) is a) 2x + y = 3 b) x - 2y = 3 c) x + 2y = 3 d) None of these

13. The product of perpendicular distances from any point on the hyperbola $9x^2 - 16y^2 = 144$ to its asymptotes is

a)
$$\frac{25}{12}$$
 b) $\frac{144}{25}$ c) $\frac{144}{7}$ d) $\frac{25}{144}$

14. The two parabolas $y^2 = 4x$ and $x^2 = 4y$ intersect at a point *P*, whose abscissae is not zero, such that

- a) They both touch each other at P
- b) They cut at right angles at *P*
- c) The tangents to each curve at *P* make complementary angles with the *x*-axis
- d) None of these

15. If the four points of the intersection of the lines 2x - y + 11 = 0 and x - 2y + 3 = 0 with the axes lie on a circle, then the coordinates of the centre of the circle are

a) (7/5, 5/2) b) (7/4, 5/4) c) (-7/4, 5/4) d) (7/4, -5/4)

16. The radius of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and having its centre (0, 3) is

a) 4 b)
$$\frac{3}{7}$$
 c) $\sqrt{12}$ d) $\frac{7}{2}$

17. The curve with parametric equations $x = \alpha + 5\cos \theta$, $y = \beta + 4\sin \theta$ (where θ is parameter) isa) A parabolab) An ellipsec) A hyperbolad) None of these

18. If *p* and *q* are the segments of a focal chord of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then a) $a^2(p+q) = 2bpq$ b) $b^2(p+q) = 2apq$ c) $a(p+q) = 2b^2pq$ d) $b(p+q) = 2a^2pq$

19. The curve with parametric equation $x = e^t + e^{-t} y = e^t - e^{-t}$ and isa) A circleb) An ellipsec) A hyperbolad) A parabola

20. The equation of the circle which passes through the points of intersection of the circles $x^2 + y^2 - 6x = 0$ and $x^2 + y^2 - 6y = 0$ and has its centre at $(\frac{3}{2}, \frac{3}{2})$, is

a)
$$x^{2} + y^{2} + 3x + 3y + 9 = 0$$

b) $x^{2} + y^{2} + 3x + 3y = 0$
c) $x^{2} + y^{2} - 3x - 3y = 0$ d) $x^{2} + y^{2} - 3x - 3y + 9 = 0$