CLASS : XIth
DATE :

Topic :- CONIC SECTION

1. For an equilateral triangle the centre is the origin and the length of altitude is a. Then, the equation of the circumcircle is
a) $x^{2}+y^{2}=a^{2}$
b) $3 x^{2}+3 y^{2}=2 a^{2}$
c) $x^{2}+y^{2}=4 a^{2}$
d) $9 x^{2}+9 y^{2}=4 a^{2}$
2. the tangents drawn from the ends of latusrectum of $y^{2}=12 x$ meets at
a) Directrix
b) Vertex
c) Focus
d) None of these
3. If B and B^{\prime} are the ends of minor axis and S and S^{\prime} are the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$, then area of the rhombus $S B S^{\prime} B^{\prime}$ will be
a) 12. sq. units
b) 48 sq. units
c) 24 sq. units
d) 36 sq. units
4. A point P moves so that sum of its distances from $(-a e, 0)$ and $(a e, 0)$ is $2 a$. Then, the locus of P is
a) $\frac{x^{2}}{a^{2}}-\frac{x^{2}}{a^{2}\left(1-e^{2}\right)}=1$
b) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1$
c) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1+e^{2}\right)}=1$
d) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}\left(1+e^{2}\right)}=1$
5. Tangents are drawn from the point on the line $x-y-5=0$ to $x^{2}+4 y^{2}=4$, then all the chords of contact pass through a fixed point, whose coordinates are
a) $\left(\frac{1}{5}, \frac{4}{5}\right)$
b) $\left(\frac{4}{5}, \frac{1}{5}\right)$
c) $\left(-\frac{4}{5},-\frac{1}{5}\right)$
d) $\left(\frac{4}{5},-\frac{1}{5}\right)$
6. If the chord $y=m x+c$ subtends a right angle at the vertex of the parabola $y^{2}=4 a x$, then the value of c is
a) -4 am
b) 4 am
c) -2 am
d) 2 am
7. If the chord of contact of tangents drawn from a point on the circle $x^{2}+y^{2}=a^{2}$ to the circle x^{2} $+y^{2}=b^{2}$ touches the circle $x^{2}+y^{2}=c^{2}$, then a, b, c are in
a) AP
b) GP
c) HP
d) None of these
8. The length of the subnormal to the parabola $y^{2}=4 a x$ at any point is equal to
a) $a \sqrt{2}$
b) $2 \sqrt{2} a$
c) $a / \sqrt{2}$
d) 2 a
9. If P is a point such that the ratio of the tangents from P to the circles $x^{2}+y^{2}+2 x-4 y-20=0$ and $x^{2}+y^{2}-4 x+2 y-44=0$ is $2: 3$, then the locus of P is a circle with centre
a) $(7,-8)$
b) $(-7,8)$
c) $(7,8)$
d) $(-7,-8)$
10. The intercepts on the line $y=x$ by the circle $x^{2}+y^{2}-2 x=0$ is $A B$. Equation of the circle on $A B$ as a diameter is
a) $x^{2}+y^{2}-x-y=0$
b) $x^{2}+y^{2}-x+y=0$
c) $x^{2}+y^{2}+x+y=0$
d) $x^{2}+y^{2}+x-y=0$
11. The equation of the normal at the point ($a \sec \theta, b \tan \theta$) of the curve $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$ is
a) $\frac{a x}{\cos \theta}+\frac{b y}{\sin \theta}=a^{2}+b^{2}$
b) $\frac{a x}{\tan \theta}+\frac{b y}{\sec \theta}=a^{2}+b^{2}$
c) $\frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}=a^{2}+b^{2}$
d) $\frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}=a^{2}-b^{2}$
12. The equation of normal to the circle $2 x^{2}+2 y^{2}-2 x-5 y+3=0$ at $(1,1)$ is
a) $2 x+y=3$
b) $x-2 y=3$
c) $x+2 y=3$
d) None of these
13. The product of perpendicular distances from any point on the hyperbola $9 x^{2}-16 y^{2}=144$ to its asymptotes is
a) $\frac{25}{12}$
b) $\frac{144}{25}$
c) $\frac{144}{7}$
d) $\frac{25}{144}$
14. The two parabolas $y^{2}=4 x$ and $x^{2}=4 y$ intersect at a point P, whose abscissae is not zero, such that
a) They both touch each other at P
b) They cut at right angles at P
c) The tangents to each curve at P make complementary angles with the x-axis
d) None of these
15. If the four points of the intersection of the lines $2 x-y+11=0$ and $x-2 y+3=0$ with the axes lie on a circle, then the coordinates of the centre of the circle are
a) $(7 / 5,5 / 2)$
b) $(7 / 4,5 / 4)$
c) $(-7 / 4,5 / 4)$
d) $(7 / 4,-5 / 4)$
16. The radius of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having its centre $(0,3)$ is
a) 4
b) $\frac{3}{7}$
c) $\sqrt{12}$
d) $\frac{7}{2}$
17. The curve with parametric equations $x=\alpha+5 \cos \theta, y=\beta+4 \sin \theta$ (where θ is parameter) is
a) A parabola
b) An ellipse
c) A hyperbola
d) None of these
18. If p and q are the segments of a focal chord of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then
a) $a^{2}(p+q)=2 b p q$
b) $b^{2}(p+q)=2 a p q$
c) $a(p+q)=2 b^{2} p q$
d) $b(p+q)=2 a^{2} p q$
19. The curve with parametric equation $x=e^{t}+e^{-t} y=e^{t}-e^{-t}$ and is
a) A circle
b) An ellipse
c) A hyperbola
d) A parabola
20. The equation of the circle which passes through the points of intersection of the circles $x^{2}+y^{2}$ $-6 x=0$ and $x^{2}+y^{2}-6 y=0$ and has its centre at $\left(\frac{3}{2}, \frac{3}{2}\right)$, is
a) $x^{2}+y^{2}+3 x+3 y+9=0$
b) $x^{2}+y^{2}+3 x+3 y=0$
c) $x^{2}+y^{2}-3 x-3 y=0$
d) $x^{2}+y^{2}-3 x-3 y+9=0$
