CLASS : XIth

1
(d)

Centre of triangle is $(0,0)$
Since, triangle is an equilateral, the centre of circumcircle is also $(0,0)$
$A D=a$ (given)

$\therefore A C=B C=A B$
$=\frac{a}{\sin 60^{\circ}}=\frac{2 a}{\sqrt{3}}$
\therefore Circumradius $=\frac{A C}{2 \sin B}$
$=\frac{2 a}{2 \sqrt{3}} \times \frac{2}{\sqrt{3}}=\frac{2 a}{3} \quad\left[\because B=60^{\circ}\right]$
\therefore required equation of circumcircle is
$x^{2}+y^{2}=\frac{4 a^{2}}{9}$
$\Rightarrow 9 x^{2}+9 y^{2}=4 a^{2}$
2
(a)

The coordinates of end point of latusrectum are $(a, 2 a)$ and $(a,-2 a) i e,(3,6)$ and $(3,-6)$
The equation of directrix is $x=-3$
The equation of tangents from the above points are $6 y=6(x+3)$ and $-6 y=6(x+3)$
$\Rightarrow x-y+3=0$ and $x+y+3=0$
The intersection point is $(-3,0)$
The equation of directrix of the parabola $y^{2}=12 x$ is $x=-3$
\Rightarrow Intersection point $(-3,0)$ lies on the directrix

We have, $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
The eccentricity of this ellipse is $\frac{4}{5}$. So, the coordinates of foci S and S^{\prime} are $(4,0)$ and $(-4,0)$
\therefore Area of rhombus $=\frac{1}{2} \times$ Product of diagonals
\Rightarrow Area of rhombus $=\frac{1}{2}\left(B B^{\prime} \times S S^{\prime}\right)$
\Rightarrow Area of rhombus $=\frac{1}{2} \times 6 \times 8$ sq. units $=24$ sq.units
4
(d)

Let the equation of ellipse be
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\because b^{2}=a^{2}\left(1-e^{2}\right)$
$\therefore \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1$

5
 (d)

Any point on the line $x-y-5=0$ will be of the form $(t, t-5)$ Chord of contact of this point with respect to curve $x^{2}+4 y^{2}=4$ is
$t x+4(t-5) y-4=0$
$\Rightarrow(-20 y-4)+t(x+4 y)=0$
Which is a family of straight lines, each member of this family pass through point of intersection of straight lines $-20 y-4=0$ and $x+4 y=0$ which is $\left(\frac{4}{5},-\frac{1}{5}\right)$

6
 (a)

The combined equation of the lines joining the origin (vertex) to the points of intersection of y^{2} $=4 a x$ and $y=m x+c$ is
$y^{2}=4 a x\left(\frac{y-m x}{c}\right) \Rightarrow c y^{2}-4 a x y+4 a m x^{2}=0$
This represents a pair of perpendicular lines
$\therefore c+4 \mathrm{am}=0 \Rightarrow c=-4 \mathrm{am}$
$7 \quad$ (b)
Let the point on $x^{2}+y^{2}=a^{2}$ is $(a \cos \theta, a \sin \theta)$
Equation of chord of contact is
$a x \cos \theta+a y \sin \theta=b^{2}$
It touches circle $x^{2}+y^{2}=c^{2}$
$\therefore\left|\frac{-b^{2}}{\sqrt{a^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\right|=c$
$\Rightarrow b^{2}=a c$
$\therefore a, b, c$ are in GP

We have,
$y^{2}=4 a x \Rightarrow\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=\frac{2 a}{y_{1}}$
\therefore Length of the sub-normal at $P\left(x_{1}, y_{1}\right)$
$=y_{1}\left(\frac{d y}{d x}\right)_{P}=y_{1} \times \frac{2 a}{y_{1}}=2 a$
9 (b)
Let $P(h, k)$ be the point such that the ratio of the squares of the lengths of the tangents from P to the circles $x^{2}+y^{2}+2 x-4 y-20=0$ and $x^{2}+y^{2}-4 x+2 y-44=0$ is $2: 3$.
Then,
$\frac{h^{2}+k^{2}+2 h-4 k-20}{h^{2}+k^{2}+4 h+2 k-44}=\frac{2}{3}$
$\Rightarrow h^{2}+k^{2}+14 h-16 k+22=0$
So, the locus of $P(h, k)$ is $x^{2}+y^{2}+14 x-16 y+22=0$
Clearly, it represents a circle having its centre at $(-7,8)$

10
 (a)

The intersection of given line and circle is
$x^{2}+y^{2}-2 x=0$
$\Rightarrow 2 x(x-1)=0$
$\Rightarrow x=0, x=1$
And $y=0,1$
Let coordinates of A are $(0,0)$ and coordinates of B are (1,1).
\therefore Equition of circle ($A B$ as a diameter) is
$\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y_{-} y_{1}\right)\left(y-y_{2}\right)=0$
$\Rightarrow(x-0)(x-1)+(y-0)(y-1)=0$
$\Rightarrow x^{2}+y^{2}-x-y=0$
11
(c)

Equation of normal to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at
$(a \sec \theta, b \tan \theta)$ is $\frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}=a^{2}+b^{2}$
12 (c)
The equation of tangent to the given circle $2 x^{2}+2 y^{2}-2 x-5 y+3=0$ at point $(1,1)$ is
$2 x+2 y-(x+1)-\frac{5}{2}(y+1)+3=0$
$\Rightarrow x-\frac{1}{2} y-\frac{1}{2}=0$
$\Rightarrow 2 x-y-1=0$
$\Rightarrow y=2 x-1$
Slope of tangent $=2$, therefore slope of normal $=-\frac{1}{2}$

Hence, equation of normal at point $(1,1)$ and having slope $\left(-\frac{1}{2}\right)$ is
$y-1=-\frac{1}{2}(x-1)$
$\Rightarrow 2 y-2=-x+1$
$\Rightarrow x+2 y=3$
13
(b)

The product of perpendicular distance from any point on $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ to its asymptotes is $\frac{a^{2} b^{2}}{a^{2}+b^{2}}$ (See illustration 3 on page 26.12)
\therefore Required product $=\frac{16 \times 9}{16+9}=\frac{144}{25}$

14
 (c)

$x^{2}=4 y$ and $y^{2}=4 x$ intersect at $O(0,0)$ and $(4,4)$. Therefore, the coordinates of P are $(4,4)$. The equations of the tangents to the two parabolas at $(4,4)$ are :
$2 x-y-4=0$
and, $x-2 y+4=0$
Now, $m_{1}=$ Slope of (i) $=2, m_{2}=$ Slope of (ii) $=1 / 2$
Clearly, $m_{1} m_{2}=1$
$\Rightarrow \tan \theta_{1} \tan \theta_{2}=1$
$\Rightarrow \tan \theta_{1}=\cot \theta_{2}$
$\Rightarrow \theta_{1}$ and θ_{2} are such that $\theta_{1}+\theta_{2}=\pi / 2$
15
(c)

The equation of a second degree curve passing through the points of intersection of the lines
$2 x-y+11=0$ and $x-2 y+3=0$ with the coordinate axes is
$(2 x-y+11)(x-2 y+3)+\lambda x y=0$
This equation will represent a circle, if
Coeff. of $x^{2}=$ Coeff. of y^{2} and Coeff.of $x y=0$
$\Rightarrow \lambda-5=0 \Rightarrow \lambda=5$
Putting the value of λ in (i), we obtain that the equation of the circle is
$(2 x-y+11)(x-2 y+3)+5 x y=0$
$\Rightarrow 2 x^{2}+2 y^{2}+7 x-5 y+3=0$
The coordinates of its centre are ($-7 / 2,5 / 2$)

16
 (a)

Given, $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
$\therefore e=\sqrt{1-\frac{9}{16}}=\frac{\sqrt{7}}{4}$
\therefore Coodinates of foci are $(\pm \sqrt{7,0})$
Since, centre of circle is $(0,3)$ and passing through foci $(\pm 7,0)$
\therefore Radius of circle $=\sqrt{(0 \pm \sqrt{7})^{2}+(3-0)^{2}}$

$$
=\sqrt{7+9}=4
$$

17
(b)

Given equation of curve is $x=\alpha+5 \cos \theta, y=\beta+4 \sin \theta$
Or $\cos \theta=\frac{x-\alpha}{5}, \sin \theta=\frac{y-\beta}{4}$
$\because \cos ^{2} \theta+\sin ^{2} \theta=1$
$\Rightarrow\left(\frac{x-\alpha}{5}\right)^{2}+\left(\frac{y-\beta}{4}\right)^{2}=1$
This represents the equation of an ellipse.
18
(b)

Let $P Q$ be a focal chord of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ having focus S. Then, $\frac{2 S P \cdot S Q}{S P+S Q}=\frac{b^{2}}{a} \Rightarrow \frac{2 p q}{p+q}=\frac{b^{2}}{a} \Rightarrow b^{2}(p+q)=2 a p q$
19 (c)
Given, parametric equations are $x=e^{t}+e^{-t}$ and $y=e^{t}-e^{-t}$
Now, on squaring and then on subtracting, we get
$x^{2}-y^{2}=4$
20
(c)

Intersection points of given circles are $(0,0)$ and $(3,3)$ let equation of required circle whose centre $\left(\frac{3}{2}, \frac{3}{2}\right)$, is
$x^{2}+y^{2}-3 x-3 y+c=0$
Since, this circle passes through $(0,0)$, thus equation of circle becomes, $x^{2}+y^{2}-3 x-3 y=0$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | D | A | C | D | D | A | B | D | B | A |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | C | C | B | C | C | A | B | B | C | C |
| | | | | | | | | | | |

