

CLASS: XIth DATE:

Solutions

SUBJECT: MATHS DPP NO.: 7

1. The equation of the unit circle concentric with $x^2 + y^2.8x + 4y - 8 = 0$ is

a)
$$x^2 + y^2 - 8x + 4y - 8 = 0$$

b)
$$x^2 + y^2 - 8x + 4y + 8 = 0$$

c)
$$x^2 + y^2 - 8x + 4y - 28 = 0$$

d)
$$x^2 + y^2 - 8x + 4y + 19 = 0$$

2. If (9a, 6a) is a point bounded in region formed by parabola $y^2 = 16x$ and x = 9, then

a)
$$a \in (0,1)$$

b)
$$a < \frac{1}{4}$$

c)
$$a < 1$$

d)
$$0 < a < 4$$

3. If the coordinates of the vertices of an ellipse are (-6,1) and (4,1) and the equation of a focal chord passing through the focus on the right side of the centre is 2x - y - 5 = 0. The equation of the ellipse is

a)
$$\frac{(x+1)^2}{25} + \frac{(y+1)^2}{16} = 1$$

b)
$$\frac{(x+1)^2}{25} + \frac{(y-1)^2}{16} = 1$$

c) $\frac{(x-1)^2}{25} + \frac{(y+1)^2}{16} = 1$

c)
$$\frac{(x-1)^2}{25} + \frac{(y+1)^2}{16} = 1$$

d) None of these

- 4. The radius of the circle $r = \sqrt{3}\sin\theta + \cos\theta$ is
 - a) 1

b) 2

c) 3

- d)4
- If the latusrectum of the hyperbola $\frac{x^2}{16} \frac{y^2}{b^2} = 1$ is $\frac{9}{2}$, then its eccentricity is
 - a) 4/5

- c) 3/4
- d)4/3
- 6. *S* and *T* are the foci of an ellipse and *B* is end point of the minor axis. If *STB* is an equilateral triangle, the eccentricity of the ellipse is
 - a) $\frac{1}{4}$

b) $\frac{1}{2}$

c) $\frac{1}{2}$

- d) $\frac{2}{3}$
- 7. The eccentricity of the hyperbola can never be equal to
 - a) $\sqrt{\frac{9}{5}}$
- b) $2\sqrt{\frac{1}{9}}$
- c) $3\sqrt{\frac{1}{8}}$
- d)2

8.	If the tangent at (α, β) to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ cuts the auxiliary circle at points whose			
ord	inates are y_1 and y_2 , the	$en \frac{1}{y_1} + \frac{1}{y_2} =$		
	a) $\frac{1}{\alpha}$	b) $\frac{2}{\alpha}$	c) $\frac{1}{\beta}$	$d)\frac{2}{\beta}$
9.		hyperbola $\frac{\sqrt{1999}}{3}(x^2-y^2)$		
	a) $\sqrt{2}$	b) 2	c) $2\sqrt{2}$	$d)\sqrt{3}$
	If the line $3x - 4y - k$ a + b is equal to	= 0, $(k > 0)$ touches the	$e \operatorname{circle} x^2 + y^2 - 4x - 8y$	-5 = 0 at (a, b) , then
	a) 20	b) 22	c) -30	d) -28
	The length of the latus: $-4y - 2 = 0$, is	rectum of the parabola v	whose focus is (3,3) and	directrix is
	a) 2	b) 1	c) 4	d) None of these
12. x ² -	$+y^2-2x-6y+6=0$, i		(0, 1) to the circle c) $4x - 3y - 3 = 0$	d) $y + 1 = 0$
13.	The circles $x^2 + y^2 + 6x^2$ a) Cut orthogonally c) Intersect two points	$x + 6y = 0$ and $x^2 + y^2 - $	-12x - 12y = 0 b) Touch each other int d) Touch each other ex	=
14. <i>B</i> ai		on the parabola $y^2 = 4ax$	x intersect at point C , the	en ordinates of A, C and
	a) Always in AP	b) <mark>Alway</mark> s in GP	c) Always in HP	d) None of these
15. 2 <i>x</i> ²	The equations of th $+5xy + 2y^2 - 11x - 7$; a) $2x^2 + 5xy + 2y^2 - 1$ c) $2x^2 + 5xy + 2y^2 - 1$	1x - 7y - 5 = 0	erbola b) $2x^2 + 4xy + 2y^2 - 7x - 11y + 5 = 0$ d) None of the above	
p_1 , p		-	$+2g_2x - a^2 = 0$ cut each a common tangent of the	
1	a) $\frac{a^2}{2}$	b) <i>a</i> ²	c) $2a^2$	d) $a^2 + 2$
	If $(a\cos\alpha, b\sin\alpha)$, $(a\cos\alpha)^2b^2$, then which of the f		points of a focal chord of	Fan ellipse $b^2x^2 + a^2y^2$
	a) $e = \frac{\sin \alpha - \sin \beta}{\sin(\alpha - \beta)}$		b) $e = \frac{\cos\left(\frac{\alpha - \beta}{2}\right)}{\cos\left(\frac{\alpha + \beta}{2}\right)}$	
	c) $\frac{e-1}{e+1} = \tan \frac{\alpha}{2} \tan \frac{\beta}{2}$		d) None of these	

- 18. A line meets the coordinates axes in *A* and *B*. A circle is circumscribed about the ΔOAB . The distances from the points A and B of the side AB to the tangent at O are equal to m and n respectively. Then, the diameter of the circle is
 - a) m(m+n)
- b) n(m+n)
- c) m-n
- d) None of these
- 19. A line *L* passing through the focus of the parabola $(y-2)^2 = 4(x+1)$ intersects the parabola in two distinct points. If m be the slope of the line L, then
 - a) $m \in (-1,1)$
 - b) $m \in (-\infty, -1) \cup (1, \infty)$
 - c) $m \in (-\infty,0) \cup (0,\infty)$
 - d) None of these
- 20. If a > 2b > 0, then the positive value of m fro which $y = mx b\sqrt{1 + m^2}$ is a common tangent to $x^2 + y^2 = b^2$ and $(x - a)^2 + y^2 = b^2$, is
 - a) $\frac{2b}{\sqrt{a^2 4b^2}}$ b) $\frac{\sqrt{a^2 4b^2}}{2b}$ c) $\frac{2b}{a 2b}$ d) $\frac{b}{a 2b}$