CLASS : XIth
DATE :

Topic :-CONIC SECTION

1. The equation of the unit circle concentric with $x^{2}+y^{2} .8 x+4 y-8=0$ is
a) $x^{2}+y^{2}-8 x+4 y-8=0$
b) $x^{2}+y^{2}-8 x+4 y+8=0$
c) $x^{2}+y^{2}-8 x+4 y-28=0$
d) $x^{2}+y^{2}-8 x+4 y+19=0$
2. If $(9 a, 6 a)$ is a point bounded in region formed by parabola $y^{2}=16 x$ and $x=9$, then
a) $a \in(0,1)$
b) $a<\frac{1}{4}$
c) $a<1$
d) $0<a<4$
3. If the coordinates of the vertices of an ellipse are $(-6,1)$ and $(4,1)$ and the equation of a focal chord passing through the focus on the right side of the centre is $2 x-y-5=0$. The equation of the ellipse is
a) $\frac{(x+1)^{2}}{25}+\frac{(y+1)^{2}}{16}=1$
b) $\frac{(x+1)^{2}}{25}+\frac{(y-1)^{2}}{16}=1$
c) $\frac{(x-1)^{2}}{25}+\frac{(y+1)^{2}}{16}=1$
d) None of these
4. The radius of the circle $r=\sqrt{3} \sin \theta+\cos \theta$ is
a) 1
b) 2
c) 3
d) 4
5. If the latusrectum of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{b^{2}}=1$ is $\frac{9}{2}$, then its eccentricity is
a) $4 / 5$
b) $5 / 4$
c) $3 / 4$
d) $4 / 3$
6. $\quad S$ and T are the foci of an ellipse and B is end point of the minor axis. If $S T B$ is an equilateral triangle, the eccentricity of the ellipse is
a) $\frac{1}{4}$
b) $\frac{1}{3}$
c) $\frac{1}{2}$
d) $\frac{2}{3}$
7. The eccentricity of the hyperbola can never be equal to
a) $\sqrt{\frac{9}{5}}$
b) $2 \sqrt{\frac{1}{9}}$
c) $3 \sqrt{\frac{1}{8}}$
d) 2
8. If the tangent at (α, β) to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ cuts the auxiliary circle at points whose ordinates are y_{1} and y_{2}, then $\frac{1}{y_{1}}+\frac{1}{y_{2}}=$
a) $\frac{1}{\alpha}$
b) $\frac{2}{\alpha}$
c) $\frac{1}{\beta}$
d) $\frac{2}{\beta}$
9. The eccentricity of the hyperbola $\frac{\sqrt{1999}}{3}\left(x^{2}-y^{2}\right)=1$, is
a) $\sqrt{2}$
b) 2
c) $2 \sqrt{2}$
d) $\sqrt{3}$
10. If the line $3 x-4 y-k=0,(k>0)$ touches the circle $x^{2}+y^{2}-4 x-8 y-5=0$ at (a, b), then $k+a+b$ is equal to
a) 20
b) 22
c) -30
d) -28
11. The length of the latusrectum of the parabola whose focus is $(3,3)$ and directrix is $3 x-4 y-2=0$, is
a) 2
b) 1
c) 4
d) None of these
12. The equation of the tangent from the point $(0,1)$ to the circle $x^{2}+y^{2}-2 x-6 y+6=0$, is
a) $y-1=0$
b) $4 x+3 y+3=0$
c) $4 x-3 y-3=0$
d) $y+1=0$
13. The circles $x^{2}+y^{2}+6 x+6 y=0$ and $x^{2}+y^{2}-12 x-12 y=0$
a) Cut orthogonally
b) Touch each other internally
c) Intersect two points
d) Touch each other externally
14. If tangents at A and B on the parabola $y^{2}=4 a x$ intersect at point C, then ordinates of A, C and B are
a) Always in AP
b) Always in GP
c) Always in HP
d) None of these
15. The equations of the asymptotes of the hyperbola $2 x^{2}+5 x y+2 y^{2}-11 x-7 y-4=0$ are
a) $2 x^{2}+5 x y+2 y^{2}-11 x-7 y-5=0$
b) $2 x^{2}+4 x y+2 y^{2}-7 x-11 y+5=0$
c) $2 x^{2}+5 x y+2 y^{2}-11 x-7 y+5=0$
d) None of the above
16. The circle $x^{2}+y^{2}+2 g_{1} x-a^{2}=0$ and $x^{2}+y^{2}+2 g_{2} x-a^{2}=0$ cut each other orthogonally. If p_{1}, p_{2} are perpendicular from $(0, a)$ and $(0,-a)$ on a common tangent of these circles, then $p_{1} p_{2}$ is equal to
a) $\frac{a^{2}}{2}$
b) a^{2}
c) $2 a^{2}$
d) $a^{2}+2$
17. If $(a \cos \alpha, b \sin \alpha),(a \cos \beta, b \sin \beta)$ are the end points of a focal chord of an ellipse $b^{2} x^{2}+a^{2} y^{2}$ $=a^{2} b^{2}$, then which of the following is correct?
a) $e=\frac{\sin \alpha-\sin \beta}{\sin (\alpha-\beta)}$
b) $e=\frac{\cos \left(\frac{\alpha-\beta}{2}\right)}{\cos \left(\frac{\alpha+\beta}{2}\right)}$
c) $\frac{e-1}{e+1}=\tan \frac{\alpha}{2} \tan \frac{\beta}{2}$
d) None of these
18. A line meets the coordinates axes in A and B. A circle is circumscribed about the $\triangle O A B$. The distances from the points A and B of the side $A B$ to the tangent at O are equal to m and n respectively. Then, the diameter of the circle is
a) $m(m+n)$
b) $n(m+n)$
c) $m-n$
d) None of these
19. A line L passing through the focus of the parabola $(y-2)^{2}=4(x+1)$ intersects the parabola in two distinct points. If m be the slope of the line L, then
a) $m \in(-1,1)$
b) $m \in(-\infty,-1) \cup(1, \infty)$
c) $m \in(-\infty, 0) \cup(0, \infty)$
d) None of these
20. If $a>2 b>0$, then the positive value of m fro which $y=m x-b \sqrt{1+m^{2}}$ is a common tangent to $x^{2}+y^{2}=b^{2}$ and $(x-a)^{2}+y^{2}=b^{2}$, is
a) $\frac{2 b}{\sqrt{a^{2}-4 b^{2}}}$
b) $\frac{\sqrt{a^{2}-4 b^{2}}}{2 b}$
c) $\frac{2 b}{a-2 b}$
d) $\frac{b}{a-2 b}$

