CLASS : XIth

Solutions

Topic :- Conic Section

1
(d)

Centre of the given circle is $(4,-2)$. Therefore, the equation of the unit circle concentric with the given circle is $(x-4)^{2}+(y+2)^{2}=1 \Rightarrow x^{2}+y^{2}-8 x+4 y+19=0$

2
(a)

Since, the point ($9 a, 6 a$) is bounded in the region formed by the parabola $y^{2}=16 x$ and $x=9$, then
$y^{2}-16 x<0, x-9<0$
$\Rightarrow 36 a^{2}-16 \cdot 9 a<0,9 a-9<0$
$\Rightarrow 36 a(a-4)<0, a<1$
$0<a<4, a<1 \Rightarrow 0<a<1$
3
(b)

It is given that the coordinates of the vertices are $A^{\prime}(-6,1)$ and $A(4,1)$. So, centre of the ellipse is at $C(-1,1)$ and length of major axis is $2 a=10$
Let e be the eccentricity of the ellipse. Then, coordinates its focus on the right side of centre ar(ae,1) or ($5 e, 1$)
It is given that $2 x-y-5=0$ is a focal chord of the ellipse.
So, it passes through ($5 e, 1$)
$\therefore 10 e-1-5=0 \Rightarrow e=\frac{3}{5}$
So, $b^{2}=a^{2}\left(1-e^{2}\right)=25\left(1-\frac{9}{25}\right)=16$
Hence, the equation of the ellipse is
$\frac{(x+1)^{2}}{25}+\frac{(y-1)^{2}}{16}=1$
4
(a)

Given, $r=\sqrt{3} \sin \theta+\cos \theta$
Put $x=r \cos \theta, y=r \sin \theta$
$\therefore r=\sqrt{3} \frac{y}{r}+\frac{x}{r}$
$\Rightarrow r^{2}=\sqrt{3} y+x$
$\Rightarrow x^{2}+y^{2}-\sqrt{3} y-x=0$
\therefore Radius $=\sqrt{\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}=1$
5
(b)

We have,
$2\left(\frac{b^{2}}{4}\right)=\frac{9}{2} \Rightarrow b^{2}=9 \Rightarrow 16\left(e^{2}-1\right)=9$
$\Rightarrow 16 e^{2}=25 \Rightarrow e=\frac{5}{4}$
6
(c)

Form right $\triangle O S B$
$\tan 0^{\circ}=\frac{b}{a e}$
$\Rightarrow \sqrt{3}=\frac{b}{a e}$
$\Rightarrow b=\sqrt{3} a e$
Also, $\quad b^{2}=a^{2}\left(1-e^{2}\right)$
$\Rightarrow 3 a^{2} e^{2}=a^{2}\left(1-e^{2}\right)$
$\Rightarrow 3 e^{2}=1-e^{2} \Rightarrow 4 e^{2}=1$
$\Rightarrow e=\frac{1}{2}$

$7 \quad$ (b)

The eccentricity of a hyperbola is never less than or equal to 1 . So option (b) is correct 8
(d)

The equation of the tangent at (α, β) to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{a x}{a^{2}}-\frac{\beta y}{b^{2}}=1$
The ordinates of the points of intersection of this tangent and the auxiliary circle $x^{2}+y^{2}=a^{2}$ are the roots of the equation
$\left\{\frac{a^{2}}{\alpha}\left(1+\frac{\beta y}{b^{2}}\right)\right\}^{2}+y^{2}=a^{2}$
$\Rightarrow \frac{a^{4}}{\alpha^{2}}\left(1+\frac{\beta^{2} y^{2}}{b^{4}}+\frac{2 \beta y}{b^{2}}\right)+y^{2}=a^{2}$
$\Rightarrow y^{2}\left(\frac{\alpha^{2}}{a^{4}}+\frac{\beta^{2}}{b^{4}}\right)+\frac{2 \beta}{b^{2}} y-\frac{\alpha^{2}}{a^{2}}+1=0$
Clearly, y_{1} and y_{2} are the roots of this equation
$\therefore y_{1}+y_{2}=-\frac{2 \beta / b^{2}}{\frac{\alpha^{2}}{a^{4}}+\frac{\beta^{2}}{b^{4}}}$ and, $y_{1} y_{2}=\frac{1-\frac{\alpha^{2}}{a^{2}}}{\frac{\alpha^{2}}{a^{4}}+\frac{\beta^{2}}{b^{4}}}$
$\Rightarrow \frac{1}{y_{1}}+\frac{1}{y_{2}}=\frac{-2 \beta / b^{2}}{1-\frac{\alpha^{2}}{a^{2}}}=\frac{-2 \beta / b^{2}}{-\frac{\beta^{2}}{b^{2}}} \quad\left[\because \frac{\alpha^{2}}{a^{2}}-\frac{\beta^{2}}{b^{2}}=1\right]$
$\Rightarrow \frac{1}{y_{1}}+\frac{1}{y_{2}}=\frac{2}{\beta}$
9
(a)

Given hyperbola is a rectangular hyperbola whose eccentricity is $\sqrt{2}$

10
 (a)

Since, the given line touches the given circle, the length of the perpendicular from the centre $(2,4)$ of the circle to the line $3 x-4 y-k=0$ is equal to the radius $\sqrt{4+16+5}=5$ of the circle
$\therefore \frac{3 \times 2-4 \times 4-k}{\sqrt{9+16}}= \pm 5$
$\Rightarrow k=15 \quad(\because k>0)$
Now, equation of the tangent at (a, b) to the given circle is
$x a+y b-2(x+a)-4(y+b)-5=0$
$\Rightarrow(a-2) x+(b-4) y-(2 a+4 b+5)=0$
If it represents the given line $3 x-4 y-k=0$
Then, $\frac{a-2}{3}=\frac{b-4}{-4}=\frac{2 a+4 b+5}{k}=l$ (say)
$\Rightarrow a=3 l+2, b=4-4 l$
and $2 a+4 b+5=k l$
$\Rightarrow 2(3 l+2)+4(4-4 l)+5=15 l \quad(\because k=15)$
$\Rightarrow l=1 \Rightarrow a=5, b=0$
$\therefore k+a+b=15+5+0=20$

11
 (a)

Since, the distance between the focus and directrix of the parabola is half of the length of the latusrectum. Therefore length of latusrectum $=2$ (length of the perpendicular from $(3,3)$ to
$3 x-4 y-2=0$)
$=2\left|\frac{9-12-2}{\sqrt{9+16}}\right|=2 \cdot \frac{5}{5}=2$
12 (a)
Given equation of circle is
$x^{2}+y^{2}-2 x-6 y+6=0 \ldots$ (i)
Its centre is $(1,3)$ and radius $=\sqrt{1+9-6}=2$
Equation of any line through $(0,1)$ is
$y-1=m(x-0)$
$\Rightarrow m x-y+1=0$
If it touches the circle (i), then the length of perpendicular from centre $(1,3)$ to the circle is equal to radius 2
$\therefore \frac{m-3+1}{\sqrt{m^{2}+1}}= \pm 2$
$\Rightarrow(m-2)^{2}=4\left(m^{2}+1\right)$
$\therefore \quad m=0,-\frac{4}{3}$
On substituting these values of m in Eq. (ii), the required tangent are $y-1=0$ and $4 x+3 y-3=0$

13 (d)

The centres of given circles are $C_{1}(-3,-3)$ and $C_{2}(6,6)$ respectively and radii are $r_{1}=\sqrt{9+9+0}$ $=3 \sqrt{2}$ and $r_{2}=\sqrt{36+36+0}=6 \sqrt{2}$ respectively
Now, $C_{1} C_{2}=\sqrt{(6+3)^{2}+(6+3)^{2}}=9 \sqrt{2}$
and $r_{1}+r_{2}=3 \sqrt{2}+6 \sqrt{2}=9 \sqrt{2}$
$\Rightarrow \quad C_{1} C_{2}=r_{1}+r_{2}$
\therefore Both circles touch each other externally

14 (a)
Let $A \equiv\left(a t_{1}^{2}, 2 a t_{1}\right), B \equiv\left(a t_{2}^{2}, 2 a t_{2}\right)$
Tangents, at A and B will intersect at the point C, whose coordinate is given by $\left\{a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right\}$.
Clearly, ordinates of A, C and B are always in AP
15
(c)

The pair of asymptotes and second degree curve differ by a constant.
\therefore Pair of asymptotes is
$2 x^{2}+5 x y+2 y^{2}-11 x-7 y+\lambda=0 \ldots$ (i)
Hence, Eq. (i) represents a pair of straight lines.
$\therefore \Delta=0$
$\Rightarrow 2 \times 2 \times \lambda+2 \times-\frac{7}{2} \times-\frac{11}{2} \times \frac{5}{2}-2 \times\left(-\frac{7}{2}\right)^{2}-2 \times\left(-\frac{11}{2}\right)^{2}-\lambda \times\left(\frac{5}{2}\right)^{2}=0$
$\Rightarrow \lambda=5$
From Eq.(i), pair of asymptotes is
$2 x^{2}+5 x y+2 y^{2}-11 x-7 y+5=0$

16 (b)

Since, the given circles cut each other orthogonally
$\therefore \mathrm{g}_{1} \mathrm{~g}_{2}+a^{2}=0$
If $l x+m y=1$ is a common tangent of these circles, then
$\frac{-\lg _{1}-1}{\sqrt{l^{2}+m^{2}}}= \pm \sqrt{\mathrm{g}_{1}^{2}+a^{2}}$
$\Rightarrow\left(\lg _{1}+1\right)^{2}=\left(l^{2}+m^{2}\right)\left(\mathrm{g}_{1}^{2}+a^{2}\right)$
$\Rightarrow m^{2} \mathrm{~g}_{1}^{2}-2 \lg _{1}+a^{2}\left(l^{2}+m^{2}\right)-1=0$
Similarly, $m^{2} \mathrm{~g}_{2}^{2}-2 \lg _{2}+a^{2}\left(l^{2}+m^{2}\right)-1=0$
So, that $\mathrm{g}_{1}, \mathrm{~g}_{2}$ are the roots of the equation
$m^{2} \mathrm{~g}^{2}-2 l g+a^{2}\left(l^{2}+m^{2}\right)-1=0$
$\Rightarrow \mathrm{g}_{1} \mathrm{~g}_{2}=\frac{a^{2}\left(l^{2}+m^{2}\right)-1}{m^{2}}=-a^{2} \quad$ [from Eq. (i)]
$\Rightarrow a^{2}\left(l^{2}+m^{2}\right)=1-a^{2} m^{2}$
Now, $p_{1} p_{2}=\frac{|m a-1|}{\sqrt{l^{2}+m^{2}}} \frac{|-m a-1|}{\sqrt{l^{2}+m^{2}}}$
$=\frac{\left|1-m^{2} a^{2}\right|}{l^{2}+m^{2}}=a^{2}$ [from Eq. (ii)]
17 (b)
If $(a \cos \alpha, b \sin \alpha)$ and $(a \cos \beta, b \sin \beta)$ are the end points of chord, then equation of chord is
$\frac{x}{a} \cos \left(\frac{\alpha+\beta}{2}\right)+\frac{y}{b} \sin \left(\frac{\alpha+\beta}{2}\right)=\cos \left(\frac{\alpha-\beta}{2}\right)$
If it is a focal chord, it passes through ($a e, 0$), so
$e \cos \left(\frac{\alpha+\beta}{2}\right)=\cos \left(\frac{\alpha-\beta}{2}\right)$
$\Rightarrow e=\frac{\cos \left(\frac{\alpha-\beta}{2}\right)}{\cos \left(\frac{\alpha+\beta}{2}\right)}$

18 (d)

Let the equation of circle be $x^{2}+y^{2}+2 \mathrm{~g} x+2 f g y=0$
(passing through origin)
Radius $=\sqrt{\mathrm{g}^{2}+f^{2}}$

Now, equation of tangents at $O(0,0)$ is
$x(0)+y(0)+g(x)+f(y)=0$
$\Rightarrow \mathrm{g} x+f y=0$
Distance from $A(2 g, 0)=\frac{2 g^{2}}{\sqrt{g^{2}+f^{2}}}=m$
and distance from $B(0,2 f)=\frac{2 f^{2}}{\sqrt{g^{2}+f^{2}}}=n$
$\Rightarrow \frac{2 r^{2}}{r}=m+n \Rightarrow 2 r=m+n$
19
(c)

We know that every line passing through the focus of a parabola intersects the parabola in two distinct points except lines parallel to the axis.

The equation $(y-2)^{2}=4(x+1)$ represents a parabola with vertex $(-1,2)$ and axis parallel to x axis. So, the line of slope m will cut the parabola in two distinct points if $m \neq 0$ i.e.
$m \in(-\infty, 0) \cup(0, \infty)$
20
(a)

Given that, any tangent to the circle $x^{2}+y^{2}=b^{2}$ is $y=m x-b \sqrt{1+m^{2}}$. It touches the circle $(x-a)^{2}$ $+y^{2}=b^{2}$, then
$\frac{m a-b \sqrt{1+m^{2}}}{\sqrt{m^{2}+1}}=b$
$\Rightarrow m a=2 b \sqrt{1+m^{2}}$
$\Rightarrow m^{2} a^{2}=4 b^{2}+4 b^{2} m^{2}$
$\therefore m= \pm \frac{2 b}{\sqrt{a^{2}-4 b^{2}}}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	A	B	A	B	C	B	D	A	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	A	D	A	C	B	B	D	C	A

