CLASS : XIth
DATE :

Topic :- CONIC SECTION

1. The number of integral values of ' a ' for which the radius of the circle $x^{2}+y^{2}+a x+(1-a)$ $y+5=0$ cannot exceed 5 , is
a) 14
b) 18
c) 16
d) None of these
2. The number of common tangents to the circles $x^{2}+y^{2}-2 x-4 y+1=0$ and $x^{2}+y^{2}-12 x-16 y+91=0$, is
a) 1
b) 2
c) 3
d) 4
3. If two tangents drawn from a point P to the parabola $y^{2}=4 x$ are at right angles, then the locus of P is
a) $x=1$
b) $2 x+1=0$
c) $x=-1 \mathrm{~d}$)
$2 x-1=0$
4. A point P moves in such a way that the ratio of its distance from two coplanar points is always a fixed number $(\neq 1)$. Then, its locus is a
a) Parabola
b) Circle
c) Hyperbola
d) Pair of straight lines
5. Two circles, each of radius 5 , have a common tangent at $(1,1)$ whose equation is $3 x+4 y-7=0$. Then their centres are
a) $(4,-5),(-2,3)$
b) $(4,-3),(-2,5)$
c) $(4,5),(-2,-3)$
d) None of these
6. The tangent at $(1,7)$ to the curve $x^{2}=y-6$ touches the circle $x^{2}+y^{2}+16 x+12 y+c=0$ at
a) $(6,7)$
b) $(-6,7)$
c) $(6,-7)$
d) $(-6,-7)$
7. If the latusrectum subtends a right angle at the centre of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then its eccentricity is
a) $\frac{\sqrt{13}}{2}$
b) $\frac{\sqrt{5}-1}{2}$
c) $\frac{\sqrt{5}+1}{2}$
d) $\frac{\sqrt{3}+1}{2}$
8. If e_{1} is the eccentricity of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{7}=1$ and e_{2} is the eccentricity of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{7}$ $=1$, then $e_{1}+e_{2}$ is equal to
a) $\frac{16}{7}$
b) $\frac{25}{4}$
c) $\frac{25}{12}$
d) $\frac{16}{9}$
9. If $y=m x-\frac{\left(a^{2}-b^{2}\right) m}{\sqrt{a^{2}+b^{2} m^{2}}}$ is normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ for all values of m belonging to
a) $(0,1)$
b) $(0, \infty)$
c) R
d) None of these
10. The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ is
a) $27 / 4$ sq units
b) 9 sq units
c) $27 / 2$ sq units
d) 27 sq units
11. If the tangent at any point P on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets the lines $b x-a y=0$ and $b x+a y=0$ in the points Q and R, then $C Q \cdot C R=$
a) $a^{2} b^{2}$
b) $a^{2}-b^{2}$
c) $a^{2}+b^{2}$
d) None of these
12. From a point T a tangent is drawn at the point $P(16,16)$ of the parabola $y^{2}=16 x$. If S be the focus of the parabola, then $\angle T P S$ can be equal to
a) $\tan ^{-1}(3 / 4)$
b) $\frac{1}{2} \tan ^{-1}(1 / 2)$
c) $\tan ^{-1}(1 / 2)$
d) $\pi / 4$
13. The number of common tangents to two circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}-8 x+12=0$ is
a) 1
b) 2
c) 5
d) 3
14. The circle $x^{2}+y^{2}+2 \mathrm{~g} x+2 f y+c=0$ cuts the parabola $x^{2}=4 a y$ at points $\left(x_{i} y_{i}\right), i=1,2,3,4$, then
a) $\sum y_{i}=0$
b) $\sum y_{i}=-4(f+2 a)$
c) $\sum x_{i}=-4(g+2 a)$
d) $\sum x_{i}=-2(\mathrm{~g}+2 a)$
15. A straight rod of length 9 units with its ends A, B always on x and y axes respectively. then, the locus of the centroid of $\triangle O A B$, is
a) $x^{2}+y^{2}=3$
b) $x^{2}+y^{2}=9$
c) $x^{2}+y^{2}=1$
d) $x^{2}+y^{2}=81$
16. If a focal chord of the parabola $y^{2}=a x$ is $2 x-y-8=0$, then the equation of the directrix is
a) $x+4=0$
b) $x-4=0$
c) $y-4=0$
d) $y+4=0$
17. The locus of the point of intersection of the tangents to the circle $x=r \cos \theta, y=r \sin \theta$ at points whose parametric angles differ by a right angle is
a) $x^{2}+y^{2}=\frac{r^{2}}{2}$
b) $x^{2}+y^{2}=2 r^{2}$
c) $x^{2}+y^{2}=4 r^{2}$
d) None of these
18. If $P(1,3)$ and $Q(1,1)$ are two points on the parabola $y^{2}=4 x$ such that a point dividing $P Q$ internally in the ratio $1: \lambda$ is an interior point of the parabola, then λ lies in the interval
a) $(0,1)$
b) $(-3 / 5,1)$
c) $(1 / 2,3 / 5)$
d) None of these
19. The value of c, for which the line $y=2 x+c$ is a tangent to the circle $x^{2}+y^{2}=16$, is
a) $-16 \sqrt{5}$
b) $4 \sqrt{5}$
c) $16 \sqrt{5}$
d) 20
20. How many common tangents can be drawn to the following circles $x^{2}+y^{2}=6 x$ and $x^{2}+y^{2}$ $+6 x+2 y+1=0$?
a) 4
b) 3
c) 2
d) 1
