

CLASS: XIth DATE:

Solutions

SUBJECT: MATHS DPP NO.: 6

1. The number of integral values of 'a' for which the radius of the circle $x^2 + y^2 + ax + (1 - a)$ y + 5 = 0 cannot exceed 5, is

a) 14

b) 18

c) 16

d) None of these

The number of common tangents to the circles

$$x^{2} + y^{2} - 2x - 4y + 1 = 0$$
 and $x^{2} + y^{2} - 12x - 16y + 91 = 0$, is

a) 1

d)4

3. If two tangents drawn from a point *P* to the parabola $y^2 = 4x$ are at right angles, then the locus of P is

- a) x = 1
- b) 2x + 1 = 0 c) x = -1d
- 2x 1 = 0

4. A point *P* moves in such a way that the ratio of its distance from two coplanar points is always a fixed number $(\neq 1)$. Then, its locus is a

a) Parabola

b) Circle

c) Hyperbola

d) Pair of straight lines

5. Two circles, each of radius 5, have a common tangent at (1,1) whose equation is 3x + 4y - 7 = 0. Then their centres are

- a) (4, -5), (-2,3)
- b) (4, -3), (-2, 5) c) (4, 5), (-2, -3)
- d) None of these

6. The tangent at (1, 7) to the curve $x^2 = y - 6$ touches the circle $x^2 + y^2 + 16x + 12y + c = 0$ at

- a) (6, 7)
- b) (-6, 7)
- c) (6, -7)

7. If the latusrectum subtends a right angle at the centre of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then its eccentricity is

a) $\frac{\sqrt{13}}{2}$

- b) $\frac{\sqrt{5}-1}{2}$
- c) $\frac{\sqrt{5}+1}{2}$
- d) $\frac{\sqrt{3}+1}{2}$

8. If e_1 is the eccentricity of the ellipse $\frac{x^2}{16} + \frac{y^2}{7} = 1$ and e_2 is the eccentricity of the hyperbola $\frac{x^2}{9} - \frac{y^2}{7}$ = 1, then $e_1 + e_2$ is equal to

a) $\frac{16}{7}$

c) $\frac{25}{12}$

9.	If $y = mx - \frac{(a^2 - b^2)m}{\sqrt{a^2 + b^2m^2}}$ is	s normal to the ellipse $\frac{x^2}{a^2}$	$+\frac{y^2}{b^2} = 1$ for all values o	f <i>m</i> belonging to
	a) (0, 1)	b) (0,∞)	c) R	d) None of these
10. The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$ is				
· · · · · ·	, ,	b) 9 sq units	c) 27/2 sq units	d) 27 sq units
11. If the tangent at any point <i>P</i> on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ meets the lines $bx - ay = 0$ and				
bx -	ay = 0 in the points $Qa) a^2b^2$	and R , then $CQ \cdot CR =$ b) $a^2 - b^2$	c) $a^2 + b^2$	d) None of these
12. From a point T a tangent is drawn at the point $P(16,16)$ of the parabola $y^2 = 16 x$. If S be the focus of the parabola, then $\angle TPS$ can be equal to				
	a) $tan^{-1}(3/4)$	b) $\frac{1}{2}$ tan $^{-1}(1/2)$	c) $tan^{-1}(1/2)$	$d)\pi/4$
	a) 1	n tangents to two circles b) 2 x + 2fy + c = 0 cuts the	c) 5	$x^{2}-8x + 12 = 0$ is d) 3 sints (x_{i},y_{i}) , $i = 1, 2, 3, 4,$
thei	$a) \sum y_i = 0$	$b) \sum y_i = -4(f+2a)$	c) $\sum x_i = -4(g+2a)$	$\mathrm{d})\sum x_i = -2(\mathrm{g} + 2a)$
15. A straight rod of length 9 units with its ends A , B always on x and y axes respectively. then, the locus of the centroid of Δ OAB , is				
	a) $x^2 + y^2 = 3$	b) $x^2 + y^2 = 9$	c) $x^2 + y^2 = 1$	d) $x^2 + y^2 = 81$
16.	If a focal chord of the p a) $x + 4 = 0$	$arabola y^2 = ax is 2x - y$ $b) x - 4 = 0$		tion of the directrix is d) $y + 4 = 0$
17. The locus of the point of intersection of the tangents to the circle $x = r\cos\theta$, $y = r\sin\theta$ at points whose parametric angles differ by a right angle is				
	a) $x^2 + y^2 = \frac{r^2}{2}$	b) $x^2 + y^2 = 2 r^2$	c) $x^2 + y^2 = 4 r^2$	d) None of these
18. If $P(1,3)$ and $Q(1,1)$ are two points on the parabola $y^2 = 4x$ such that a point dividing PQ internally in the ratio $1:\lambda$ is an interior point of the parabola, then λ lies in the interval a) $(0,1)$ b) $(-3/5,1)$ c) $(1/2,3/5)$ d) None of these				
19.		th the line $y = 2x + c$ is a b) $4\sqrt{5}$	a tangent to the circle x^2 c) $16\sqrt{5}$	$+ y^2 = 16$, is d) 20
	How many common tan x + 2y + 1 = 0? a) 4 b) 3	ngents can be drawn to to	the following circles x^2	$+ y^2 = 6x$ and $x^2 + y^2$