CLASS : XIth

1
(c)

We have,
$x^{2}+y^{2}+a x+(1-a) y+5=0$
It is given that the radius of this circle is less than or equal to 5
$\therefore \frac{a^{2}}{4}+\frac{(1-a)^{2}}{4}-5 \leq 25$
$\Rightarrow 2 a^{2}-2 a-119 \leq 0 \Rightarrow-7.2 \leq a \leq 8.2 \Rightarrow a \in[-7,8]$
But, a is an integer
$\therefore a=-7,-6,-5,-4,-3,-2,-1,1,0,1,2,3,4,5,6,7,8$
Hence, these are 16 integral values of a
2
(d)

Given equation of circles are $x^{2}+y^{2}-2 x-4 y+1=0$ and $x^{2}+y^{2}-12 x-16 y+91=0$ whose centre and radius are $C_{1}(1,2), r_{1}=2$ and $C_{2}(6,8), r_{2}=3$
$\therefore C_{1} C_{2}=\sqrt{(1-6)^{2}+(2-8)^{2}}$
$=\sqrt{25+36}=\sqrt{61}$
And $r_{1}+r_{2}=2+3=5$
$\because C_{1} C_{2}>r_{1}+r_{2}$
\therefore Number of common tangents $=4$
3 (c)
We know that the locus of point P from which two perpendicular tangents are drawn to the parabola, is the directrix of the parabola.

Hence, the required locus is $x=1$
4
(b)

Let two coplanar points be $(0,0)$ and $(a, 0)$
$\therefore \quad \frac{\sqrt{x^{2}+y^{2}}}{\sqrt{(x-a)^{2}+y^{2}}}=\lambda \quad[\lambda \neq 1]$
[where λ is any number]
$\Rightarrow x^{2}+y^{2}+\left(\frac{\lambda^{2}}{\lambda^{2}-1}\right)\left(a^{2}-2 a x\right)=0$

Which is the equation of circle
5
(c)

The equation of line $C_{1} C_{2}$ is
$\frac{x-1}{3 / 5}=\frac{y-1}{4 / 5}$
So, the coordinates of C_{1} and C_{2} are given by
$\frac{x-1}{3 / 5}=\frac{y-1}{4 / 5}= \pm 5 \Rightarrow x=1 \pm 3, y=1 \pm 4$
Thus, the coordinates of the centres are $(4,5),(-2,-3)$

6
(d)

The tangent at $(1,7)$ to the parabola $x^{2}=y-6$ is
$x=\frac{1}{2}(y+7)-6$
$\Rightarrow 2 x=y+7-12$
$\Rightarrow y=2 x+5$
Which is also tangent to the circle
$x^{2}+y^{2}+16 x+12 y+c=0$
$\therefore x^{2}+(2 x+5)^{2}+16 x+12(2 x+5)+c=0$
Or $5 x^{2}+60 x+85+c=0$
Must have equal roots
Let α and β are the roots of the equation
$\Rightarrow \alpha+\beta=-12 \Rightarrow \alpha=-6 \quad(\because \alpha=\beta)$
$\therefore x=-6$ and $y=2 x+5=-7$
\Rightarrow point of contact is $(-6,-7)$
7 (c)
Let $C(0,0)$ be the centre and $L\left(a e, b^{2} / a\right)$ and $L^{\prime}\left(-a e, b^{2} / a\right)$ be the vertices of latusrectum $L L^{\prime}$. Then,
$m_{1}=$ Slope of $C L=\frac{b^{2} / a-0}{a e-0}=\frac{b^{2}}{a^{2} e}$
$m_{2}=$ Slope of $C L^{\prime}=\frac{b^{2} / a-0}{-a e-0}=\frac{-b^{2}}{a^{2} e}$
It is given that $\angle L C L^{\prime}=\pi / 2$
$\therefore m_{1} m_{2}=-1$
$\Rightarrow \frac{b^{2}}{a^{2} e} \times \frac{-b^{2}}{a^{2} e}=-1$
$\Rightarrow\left(e^{2}-1\right)^{2}=e^{2}$
$\Rightarrow e^{2}-1=e \Rightarrow e^{2}-e-1=0 \Rightarrow e=\frac{1+\sqrt{5}}{2}$

8
(c)

Given, ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{7}=1$
$\therefore e_{1}=\sqrt{1-\frac{7}{16}}=\frac{3}{4}$
and hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{7}=1$
$\therefore e_{2}=\sqrt{1+\frac{7}{9}}=\frac{4}{3}$
Now, $e_{1}+e_{2}=\frac{3}{4}+\frac{4}{3}=\frac{25}{12}$
9 (c)
The equation of normal to the given ellipse at $P(a \cos \theta, b \sin \theta)$ is
$a x \sec \theta-b y \operatorname{cosec} \theta-a^{2}=b^{2}$
$\Rightarrow y=\left(\frac{a}{b} \tan \theta\right) x-\frac{a^{2}-b^{2}}{b} \sin \theta \ldots$ (i)
Let $\frac{a}{b} \tan \theta=m$, then $\sin \theta=\frac{b m}{\sqrt{a^{2}+b^{2} m^{2}}}$
\therefore From Eq. (i), we get
$y=m x-\frac{\left(a^{2}-b^{2}\right) m}{\sqrt{a^{2}+b^{2} m^{2}}}$
$\because \frac{a}{b} \tan \theta \in R \Rightarrow m \in R$
10 (d)
Given, $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$
Latusrectum of an ellipse be
$a e=\sqrt{a^{2}-b^{2}}=\sqrt{4}=2$

By symmetry the quadrilateral is rhombus
\Rightarrow Equation of tangent at $\left(a e, \frac{b^{2}}{a}\right)=\left(2, \frac{5}{3}\right)$
ie, $\frac{2}{9} x+\frac{5}{3} \cdot \frac{y}{5}=1$
$\Rightarrow \frac{x}{9 / 2}+\frac{y}{3}=1$
\therefore Area of quadrilateral $A B C D=4($ area of $\triangle A O B)$
$=4 .\left\{\frac{1}{2} \cdot \frac{9}{2} \cdot 3\right\}$
$=27$ sq units

11
 (c)

The equation of the tangent at $P(a \sec \theta, b \tan \theta)$ to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{x}{a} \sec \theta-\frac{y}{b} \tan \theta=1$
This cuts the line $\frac{x}{a}-\frac{y}{b}=0$ and $\frac{x}{a}+\frac{y}{b}=0$ at Q and R
The coordinates of Q and Rare
$Q\left(\frac{a}{\sec \theta-\tan \theta}, \frac{b}{\sec \theta-\tan \theta}\right), R\left(\frac{a}{\sec \theta+\tan \theta}, \frac{-b}{\sec \theta+\tan \theta}\right)$
$\therefore C Q \cdot C R=\frac{\sqrt{a^{2}+b^{2}}}{(\sec \theta-\tan \theta)} \times \frac{\sqrt{a^{2}+b^{2}}}{(\sec \theta+\tan \theta)}=a^{2}+b^{2}$
12
(c)

We know that $P T$ bisects $\angle N P S$
Let $\angle N P T=\angle T P S=\frac{\theta}{2}$. Then,

$\angle P S X=\theta$
$\Rightarrow \tan \theta=\frac{16-0}{16-4}$
$\Rightarrow \tan \theta=\frac{4}{3}$
$\Rightarrow \frac{2 \tan \theta / 2}{1-\tan ^{2} \theta / 2}=\frac{4}{3}$

$$
\begin{aligned}
& \Rightarrow 3 \tan \frac{\theta}{2}=2-2 \tan ^{2} \frac{\theta}{2} \\
& \Rightarrow 2 \tan ^{2} \frac{\theta}{2}+3 \tan \frac{\theta}{2}-2=0 \\
& \Rightarrow\left(2 \tan \frac{\theta}{2}-1\right)\left(\tan \frac{\theta}{2}+2\right)=0 \\
& \Rightarrow \tan \frac{\theta}{2}=\frac{1}{2} \\
& \Rightarrow \frac{\theta}{2}=\tan ^{-1}\left(\frac{1}{2}\right) \Rightarrow \angle T P S=\tan ^{-1}\left(\frac{1}{2}\right) \\
& 13 \quad \text { (d) }
\end{aligned}
$$

The centres and radii of gives circles are $C_{1}(0,0), C_{2}(4,0)$ and $r_{1}=2, r_{2}=2$
Now, $C_{1} C_{2}=\sqrt{(4-0)^{2}+0}=4$
and $r_{1}+r_{2}=2+2=4$
$\therefore C_{1} C_{2}=r_{1}+r_{2}$
Hence, three common tangents are possible
14 (b)
Given, circle cuts the parabola
$\therefore x^{2}+\left(\frac{x^{2}}{4 a}\right)^{2}+2 \mathrm{~g} x+2 f\left(\frac{x^{2}}{4 a}\right)+c=0$
$\Rightarrow x^{4}+16 a^{2} x^{2}+8 a f x^{2}+32 \mathrm{~g} x a^{2}+16 a^{2} c=0$
$\sum x_{i}=0$
$\sum x_{1} x_{2}=16 a^{2}+8 a f$
Now, $\sum y_{i}=\frac{1}{4 a} \sum x_{i}^{2}$
$=\frac{1}{4 a}\left[\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{2}-2 \sum x_{1} x_{2}\right]$
$=-\frac{1}{2 a}\left(16 a^{2}+8 a f\right)=-4(f+2 a)$
15 (b)
Let the coordinates of A and B be $(a, 0)$ and $(0, b)$ respectively. then,
$a^{2}+b^{2}=9^{2}$
Let $P(h, k)$ be the centroid of $\triangle O A B$. Then,
$h=\frac{a}{3}$ and $k=\frac{b}{3} \Rightarrow a-3 h$ and $b=3 k$
Substituting the values of a and b in (i), we get
$9 h^{2}+9 k^{2}=9^{2} \Rightarrow h^{2}+k^{2}=9$
Hence, the locus of (h, k) is $x^{2}+y^{2}=9$
16 (a)
Given focal chord of parabola $y^{2}=a x$ is $2 x-y-8=0$
Since, this chord passes through focus $\left(\frac{a}{4}, 0\right)$
$\therefore 2 . \frac{a}{4}-0-8=0 \Rightarrow a=16$
Hence, directrix is $x=-4 \Rightarrow x+4=0$

17
 (b)

Let one of the points be $P(r \cos \theta, r \sin \theta)$. Then, the other point is $Q(r \cos (\pi / 2+\theta)),(r \sin (\pi / 2+\theta)$
) i.e. $Q(-r \sin \theta, r \cos \theta)$. The equations of tangents at P and Q are
$x \cos \theta+y \sin \theta=r$ and $-x \sin \theta+y \cos \theta=r$
The locus of the point of intersection of these two is obtained by eliminating θ from these two equations. Squaring and adding the two equations, we get
$(x \cos \theta+y \sin \theta)^{2}+(-x \sin \theta+y \cos \theta)^{2}=r^{2}+r^{2}$
or, $x^{2}+y^{2}=2 r^{2}$, which is the required locus
18 (a)
The coordinates of a point dividing $P Q$ internally in the ratio $1: \lambda$ are $\left(\frac{1+\lambda}{\lambda+1}, \frac{1+3 \lambda}{\lambda+1}\right)$
This point is an interior point of the parabola $y^{2}=4 x$
$\therefore\left(\frac{1+3 \lambda}{\lambda+1}\right)^{2}-4\left(\frac{1+\lambda}{\lambda+1}\right)<0$
$\Rightarrow(3 \lambda+1)^{2}-4(\lambda+1)^{2}<0$
$\Rightarrow 5 \lambda^{2}-2 \lambda-3<0$
$\Rightarrow(5 \lambda+3)(\lambda-1)<0$
$\Rightarrow \lambda-1<0 \quad[\because \lambda>0]$
$\Rightarrow 0<\lambda<1 \Rightarrow \lambda \in(0,1)$
19
(b)

Given that, $y=2 x+c$
And $x^{2}+y^{2}=16$
We know that, if $y=m x+c$ is tangent to the circle
$x^{2}+y^{2}=a^{2}$, then $c= \pm a \sqrt{1+m^{2}}$, here, $m=2, a=4$
$\therefore c= \pm 4 \sqrt{1+2^{2}}= \pm 4 \sqrt{5}$
20

(a)

Given, $x^{2}+y^{2}=6 x$
and $x^{2}+y^{2}+6 x+2 y+1=0$
From Eq. (i), $x^{2}-6 x+y^{2}=0$
$\Rightarrow(x-3)^{2}+y^{2}=3^{2}$
\therefore Centre $(3,0), r=3$
From Eq. (ii),
$x^{2}+6 x+y^{2}+2 y+1+3^{2}=3^{2}$
$\Rightarrow(x+3)^{2}+(y+1)^{2}=3^{2}$
\therefore Centre $(-3,-1)$, radius $=3$

Now, distance between centres
$=\sqrt{(3+3)^{2}+1}$
$=\sqrt{37}>r_{1}+r_{2}=6$
\therefore Circles do not cut each other
$\Rightarrow 4$ tangents (two direct and two transversal) are possible

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | C | D | C | B | C | D | C | C | C | D |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | C | C | D | B | B | A | B | A | B | A |
| | | | | | | | | | | |

