CLASS : XIth
DATE :

Topic :- conic section

1. The angle between the tangents drawn from the origin to the parabola $y^{2}=4 a(x-a)$, is
a) 90°
b) 30°
c) $\tan ^{-1}(1 / 2)$
d) 45°
2. If for the ellipse $\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{b^{2}}=1, y$-axis is the minor axis and the length of the latusrectum is one half of the length of its minor axis, then its eccentricity is
a) $\frac{1}{\sqrt{2}}$
b) $\frac{1}{2}$
c) $\frac{\sqrt{3}}{2}$
d) $\frac{3}{4}$
3. The coordinates of the centre of the circle which intersects circles $x^{2}+y^{2}+4 x+7=0,2 x^{2}+2$ $y^{2}+3 x+5 y+9=0$ and $x^{2}+y^{2}+y=0$ orthogonally are
a) $(-2,1)$
b) $(-2,-1)$
c) $(2,-1)$
d) $(2,1)$
4. Equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
$\left(a b c+2 f g h-a f^{2}-b g^{2}-c h^{2} \neq 0\right)$ represents a parabola, if
a) $h^{2}=a b$
b) $h^{2}>a b$
c) $h^{2}<a b$
d) None of these
5. The ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ have in common
a) centre only
b) Centre, foci and directrices
c) Centre, foci and vertices
d) Centre and vertices only
6. The eccentricity of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{25}=1$ is
a) $\frac{3}{4}$
b) $\frac{3}{5}$
c) $\frac{\sqrt{41}}{4}$
d) $\frac{\sqrt{41}}{5}$
7. One equation of common tangent to ellipse $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=2$ is
a) $2 y=\sqrt{3} b x+a b$
b) $y=2 \sqrt{3} \frac{b}{a} x+2 b$
c) No common tangent
d) $a y=\sqrt{3} b x+2 a b$
8. If $l x+m y+n=0$ is a tangent to the rectangular hyperbola $x y=c^{2}$, then
a) $l<m<0$
b) $l>0, m<0$
c) $l\langle 0, m\rangle 0$
d) None of these
9. The normals at three points P, Q, R of the parabola $y^{2}=4 a x$ meet in (h, k). The centroid of triangle $P Q R$ lies on
a) $x=0$
b) $y=0$
c) $x=-a$
d) $y=a$
10. If the point $P(4,-2)$ is the one end of the focal chord $P Q$ of the parabola $y^{2}=x$, then the slope of the tangent at Q is
a) $-1 / 4$
b) $1 / 4$
c) 4
d) -4
11. Equation of normal to the parabola $y^{2}=4 x$ which passes through $(3,0)$ is
a) $x+y=3$
b) $x+y+3=0$
c) $x-2 y=3$
d) None of these
12. Let C be the centre of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. If the tangent at any point on the ellipse cuts the coordinate axes in P and Q respectively, then $\frac{a^{2}}{C P^{2}}+\frac{b^{2}}{C Q^{2}}=$
a) 1
b) 2
c) 3
d) 4
13. The equation of the circle having $x-y-2=0$ and $x-y+2=0$ as two tangents and $x-y=0$ as a diameter is
a) $x^{2}+y^{2}+2 x-2 y+1=0$
b) $x^{2}+y^{2}-2 x+2 y-1=0$
c) $x^{2}+y^{2}=2$
d) $x^{2}+y^{2}=1$
14. If $(-3,2)$ lies on the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ which is concentric with the circle x^{2} $+y^{2}+6 x+8 y-5=0$, then c is equal to
a) 11
b) -11
c) 24
d) 100
15. The equation of the circumcircle of the triangle formed by the lines $x=0, y=0,2 x+3 y=5$ is
a) $6\left(x^{2}+y^{2}\right)+5(3 x-2 y)=0$
b) $x^{2}+y^{2}-2 x-3 y+5=0$
c) $x^{2}+y^{2}+2 x-3 y-5=0$
d) $6\left(x^{2}+y^{2}\right)-5(3 x+2 y)=0$
16. Circles are drawn through the point $(2,0)$ to cut intercepts of length 5 units on the x-axis. If their centres lie in the first quadrant, then their equation is
a) $x^{2}+y^{2}-9 x+2 k y+14=0$
b) $3 x^{2}+3 y^{2}+27 x-2 k y+42=0$
c) $x^{2}+y^{2}-9 x-2 k y+14=0$
d) $x^{2}+y^{2}-2 k x-9 y+14=0$
17. The number of points with integral coordinates with lie in the interior of the region common to the circle $x^{2}+y^{2}=16$ and the parabola $y^{2}=4 x$ is
a) 8
b) 10
c) 16
d) None of these
18. If the chords of contact of the tangents from a point on the circle $x^{2}+y^{2}=a^{2}$ to the circle $x^{2}+$ $y^{2}=b^{2}$ touch the circle $x^{2}+y^{2}=c^{2}$, then the roots of the equation $a x^{2}+2 b x+c=0$, are
a) Imaginary
b) Real and equal
c) Real and unequal
d) Rational
19. If the vertex and focus of a parabola are $(3,3)$ and $(-3,3)$ respectively, then its equation is
a) $x^{2}+6 x-24 y+63=0$
b) $x^{2}-6 x+24 y-63=0$
c) $y^{2}-6 y+24 x-63=0$
d) $y^{2}+6 y-24 x+63=0$
20. If the length of the major axis of an ellipse is three times the length of its minor axis, its eccentricity, is
a) $\frac{1}{3}$
b) $\frac{1}{\sqrt{3}}$
c) $\frac{1}{\sqrt{2}}$
d) $\frac{2 \sqrt{2}}{3}$

