CLASS : XIth

Topic :- CONIC SECTION

1
(a)

Using $S S^{\prime}=T^{2}$, the combined equation of the tangents drawn from $(0,0)$ to $y^{2}=4 a(x-a)$ is
$\left(y^{2}-4 a x+4 a^{2}\right)\left(0-0+4 a^{2}\right)=[y \cdot 0-2 a(x+0-2 a)]^{2}$
$\Rightarrow\left(y^{2}-4 a x+4 a^{2}\right)\left(4 a^{2}\right)=4 a^{2}(x-2 a)^{2}$
$\Rightarrow y^{2}-4 a x+4 a^{2}=(x-2 a)^{2}$
$\Rightarrow x^{2}-y^{2}=0$
Clearly, Coeff. of $x^{2}+$ Coeff. of $y^{2}=0$. Therefore, the required angle is a right angle
ALITER The point $(0,0)$ lies on the directrix $x=0$ of the parabola $y^{2}=4 a(x-a)$, therefore the tangents are at right angle
2
(c)

We know that length of latusrectum of an ellipse $=\frac{2 b^{2}}{a}$ and length of its minor axis $=2 b$
Then, $\frac{2 b^{2}}{a}=b \Rightarrow 2 b=a$
$\therefore e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{b^{2}}{4 b^{2}}}=\frac{\sqrt{3}}{2}$

3
 (b)

The required point is the radical centre of the given circles
4
(a)

Equation $a x^{2}+2 h x y+b y^{2}+2 \mathrm{~g} x+2 f y+c=0$ represents a parabola, if $h^{2}=a b$
5
(d)

Let e and e^{\prime} be the eccentricities of the ellipse and hyperbola
$\therefore e=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}=\sqrt{\frac{25-16}{25}}=\frac{3}{5}$
and $e^{\prime}=\sqrt{\frac{a^{2}+b^{2}}{a^{2}}}=\sqrt{\frac{25+16}{25}}=\frac{\sqrt{41}}{5}$

1. Centre of ellipse is $(0,0)$ and centre of hyperbola is $(0,0)$
2. Foci of ellipse are $(\pm a e, 0)$ or $(\pm 3,0)$ foci of hyperbola are $\left(\pm a e^{\prime}, 0\right)$ or $(\pm \sqrt{41}, 0)$
3. Directrices of ellipse are $x= \pm \frac{a}{e} \Rightarrow x= \pm \frac{25}{3}$

Directrices of hyperbola are $x= \pm \frac{a}{e}$
$\Rightarrow x= \pm \frac{25}{\sqrt{41}}$
4. Vertices of ellipse are $(\pm a, 0)$ or $(\pm 5,0)$

Vertices of hyperbola are ($\pm a, 0$) or ($\pm 5,0$)
From the above discussions, their are common in centre and vertices.
6
(c)

Given equation is $\frac{x^{2}}{16}-\frac{y^{2}}{25}=1$
$\therefore e=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{1+\frac{25}{16}}=\frac{\sqrt{41}}{4}$
7 (d)
Equation of tangent to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
$y=m x+\sqrt{a^{2} m^{2}+b^{2}}$
And equation of tangent to $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=2$ is
$y=m x+\sqrt{2 a^{2} m^{2}+2 b^{2}}$
For common tangent,
$a^{2} m^{2}+b^{2}=2 a^{2} m^{2}-2 b^{2}$
$\Rightarrow a^{2} m^{2}=3 b^{2} \Rightarrow m= \pm \frac{\sqrt{3} b}{a}$
\therefore Equation of common tangent is $y=\frac{\sqrt{3} b}{a} x+2 b$.
$8 \quad$ (a)
The equation of a tangent to $x y=c^{2}$ is
$\frac{x}{t}+y t=2 c$
If $l x+m y+n=0$ is a tangent to $x y=c^{2}$, then it should be of the form of equation (i).
$\therefore \frac{l}{1 / t}=\frac{m}{t}=\frac{-n}{2 c}$
$\Rightarrow l t=\frac{m}{t}=-\frac{n}{2 c}$
$\Rightarrow l t=-\frac{n}{2 c}$ and $\frac{m}{t}=-\frac{n}{2 c}$
$\Rightarrow l m=\frac{n^{2}}{4 c^{2}}$
$\Rightarrow l m>0 \Rightarrow l$ and m are of the same sign
10
(c)

The equation of the tangent at $(4,-2)$ to $y^{2}=x$ is
$-2 y=\frac{1}{2}(x+4) \Rightarrow x+4 y+4=0$
Its slope is $-1 / 4$. Therefore, the slope of the perpendicular line is 4 . Since the tangents at the end points of a focan chord of a parabola are at right angles. Therefore, the slope of the tangent at Q is 4 11 (a)
The equation of a normal to $y^{2}=4 x$ is
$y+t x=2 t+t^{3}$
If it passes through $(3,0)$, then
$3 t=2 t+t^{3} \Rightarrow t=0, \pm 1$
Putting the values of t in (i), we get
$y=0, y+x=3$ and $y-x=-3$
As the equation of the normals
12
(a)

Let $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$ be tangent at
$P(a \cos \theta, b \sin \theta)$.
Its cuts the coordinates axes at $P(a \sec \theta, 0)$ and $Q(0, b \operatorname{cosec} \theta)$
$\therefore C P=a \sec \theta$ and $C Q=b \operatorname{cosec} \theta$
$\Rightarrow \frac{a^{2}}{C P^{2}}+\frac{b^{2}}{C Q^{2}}=1$
13
(c)

Since, the equation of tangents $x-y-2=0$ and $x-y+2=0$ are parallel.
\therefore Distance between them $=$ Diameter of the circle $=\frac{2-(-2)}{\sqrt{1^{2}+1^{2}}}$

$$
\begin{aligned}
& \left(\because \frac{c_{2}-c_{1}}{\sqrt{a^{2}+b^{2}}}\right) \\
& =\frac{4}{\sqrt{2}}=2 \sqrt{2}
\end{aligned}
$$

$\therefore \quad$ Radius $=\frac{1}{2}(2 \sqrt{2})=\sqrt{2}$

It is clear from the figure that centre lies on the origin.
\therefore Equation of circle is

$$
(x-0)^{2}+(y-0)^{2}=(\sqrt{2})^{2}
$$

$\Rightarrow x^{2}+y^{2}=2$
14 (b)
Equation of family of concentric circles to the circle $x^{2}+y^{2}+6 x+8 y-5=0$ is $x^{2}+y^{2}$
$+6 x+8 y+\lambda=0$ which is similar to $x^{2}+y^{2}+2 g x+2 f y+c=0$. Since, it is equation of concentric circle to the circle $x^{2}+y^{2}+6 x+8 y-5=0$. Thus, the point $(-3,2)$ lies on the circle $x^{2}+y^{2}$ $+6 x+8 y+c=0$
$\Rightarrow(-3)^{2}+(2)^{2}+6(-3)+8(2)+c=0$
$\Rightarrow 9+4-18+16+c=0$
$\Rightarrow c=-11$
15
(d)

On solving the given equations, we get $(0,0), B(0,5 / 3), C(5 / 2,0)$.
Let equation of circle be
$x^{2}+y^{2}+2 g x+2 f y+c=0$
Eq. (i) passes through $A(0,0)$, we get $c=0$
Similarly, Eq. (i) passes through $B(0,5 / 3)$ and $C(5 / 2,0)$, we get
$2 f=-5 / 3$ and $2 g=-5 / 2$
\therefore Required equation of circle is
$x^{2}+y^{2}-\frac{5}{2} x-\frac{5}{3} y=0$
$\Rightarrow 6 x^{2}+6 y^{2}-15 x-10 y=0$
16
(c)

We have,
$O M=O A+A M=2+5 / 2=9 / 2$
So, the x-coordinate of the centre is $9 / 2$
\therefore Radius $=C A=\sqrt{(9 / 2-2)^{2}+(k-0)^{2}}$
Hence, the equation of the circle is
$(x-9 / 2)^{2}+(y-k)^{2}=\sqrt{(9 / 2-2)^{2}+k^{2}}$
$\Rightarrow x^{2}+y^{2}-9 x-2 k y+14=0$

18 (b)
Let $P\left(x_{1}, y_{1}\right)$ be a point on $x^{2}+y^{2}=a^{2}$. Then, $x_{1}^{2}+y_{1}^{2}=a^{2}$

Let $Q R$ be the chord of contact of tangents drawn from $P\left(x_{1}, y_{1}\right)$ to the circle $x^{2}+y^{2}=b^{2}$. Then, the equation $Q R$ is
$x x_{1}+y y_{1}=b^{2}$
This touches the circle $x^{2}+y^{2}=c^{2}$
$\therefore\left|\frac{0 x_{1}+0 y_{1}-b^{2}}{\sqrt{x_{1}^{2}+y_{1}^{2}}}\right|=c \Rightarrow b^{2}=a c \quad[\mathrm{Usin}:(\mathrm{i})]$
Let D be the discriminant of $a x^{2}+2 b x+c=0$. Then,
$D=4\left(b^{2}-a c\right)=0 \quad\left[\because b^{2}=a c\right]$
Hence, the roots of the given equal are real and equal
19
(c)

The equation of the line joining $(3,3)$ and $(-3,3)$ i.e. axis of the parabola is $y-3=0$.
Since the directrix is a line perpendicular to the axis. Therefore, its equation is $x+\lambda=0$.
The directrix intersects with the axis at $(-\lambda, 3)$ and the vertex is the mid point of the line segment joining the focus and the point of intersection of the directrix and axis
$\therefore \frac{-\lambda-3}{2}=3 \Rightarrow \lambda=-9$
So, the equation of the directrix is $x-9=0$
Let $P(x, y)$ be any point on the parabola. Then, by definition, we have
$(x+3)^{2}+(y-3)^{2}=(x-9)^{2}$
$\Rightarrow y^{2}-6 y+24 x-63=0$
20
(d)

Let the equation of the ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
It is given that,

$$
2 a=3(2 b) \Rightarrow a^{2}=9 b^{2}=a^{2}=9 a^{2}\left(1-e^{2}\right) \Rightarrow e=\frac{2 \sqrt{2}}{3}
$$

