

CLASS: XIth DATE:

Solutions

SUBJECT: MATHS DPP NO.: 5

Topic:-conic section

1 (a`

Using $SS' = T^2$, the combined equation of the tangents drawn from (0,0) to $y^2 = 4 a(x - a)$ is $(y^2 - 4 ax + 4 a^2)(0 - 0 + 4 a^2) = [y \cdot 0 - 2 a(x + 0 - 2a)]^2$

$$\Rightarrow (y^2 - 4 ax + 4 a^2)(4a^2) = 4 a^2(x - 2a)^2$$

$$\Rightarrow y^2 - 4 ax + 4 a^2 = (x - 2a)^2$$

$$\Rightarrow x^2 - y^2 = 0$$

Clearly, Coeff. of x^2 + Coeff. of y^2 = 0. Therefore, the required angle is a right angle

ALITER The point (0,0) lies on the directrix x = 0 of the parabola $y^2 = 4 a(x - a)$, therefore the tangents are at right angle

2 **(c)**

We know that length of latusrectum of an ellipse = $\frac{2b^2}{a}$ and length of its minor axis = 2b

Then,
$$\frac{2b^2}{a} = b \implies 2b = a$$

$$\therefore e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{b^2}{4b^2}} = \frac{\sqrt{3}}{2}$$

3 **(b**)

The required point is the radical centre of the given circles

4 **(a**)

Equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a parabola, if $h^2 = ab$

5 **(d)**

Let e and e' be the eccentricities of the ellipse and hyperbola

$$\therefore e = \sqrt{\frac{a^2 - b^2}{a^2}} = \sqrt{\frac{25 - 16}{25}} = \frac{3}{5}$$

and
$$e' = \sqrt{\frac{a^2 + b^2}{a^2}} = \sqrt{\frac{25 + 16}{25}} = \frac{\sqrt{41}}{5}$$

1. Centre of ellipse is (0,0) and centre of hyperbola is (0,0)

- 2. Foci of ellipse are $(\pm ae,0)$ or $(\pm 3,0)$ foci of hyperbola are $(\pm ae',0)$ or $(\pm \sqrt{41},0)$
- 3. Directrices of ellipse are $x = \pm \frac{a}{e} \Rightarrow x = \pm \frac{25}{3}$

Directrices of hyperbola are $x = \pm \frac{a}{e}$

$$\Rightarrow x = \pm \frac{25}{\sqrt{41}}$$

4. Vertices of ellipse are $(\pm a,0)$ or $(\pm 5,0)$

Vertices of hyperbola are ($\pm a$,0) or (± 5 ,0)

From the above discussions, their are common in centre and vertices.

6 **(c)**

Given equation is $\frac{x^2}{16} - \frac{y^2}{25} = 1$

$$\therefore e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{25}{16}} = \frac{\sqrt{41}}{4}$$

7 **(d**)

Equation of tangent to $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

$$y = mx + \sqrt{a^2m^2 + b^2}$$

And equation of tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2$ is

$$y = mx + \sqrt{2a^2m^2 + 2b^2}$$

For common tangent,

$$a^2m^2 + b^2 = 2a^2m^2 - 2b^2$$

$$\Rightarrow a^2m^2 = 3b^2 \Rightarrow m = \pm \frac{\sqrt{3}b}{a}$$

 \therefore Equation of common tangent is $y = \frac{\sqrt{3}b}{a}x + 2b$.

8 **(a**)

The equation of a tangent to $xy = c^2$ is

$$\frac{x}{t} + yt = 2c \qquad (i)$$

If lx + my + n = 0 is a tangent to $xy = c^2$, then it should be of the form of equation (i).

$$\frac{l}{1/t} = \frac{m}{t} = \frac{-n}{2c}$$

$$\Rightarrow lt = \frac{m}{t} = -\frac{n}{2c}$$

$$\Rightarrow lt = -\frac{n}{2c} \text{ and } \frac{m}{t} = -\frac{n}{2c}$$

$$\Rightarrow lm = \frac{n^2}{4c^2}$$

 $\Rightarrow lm > 0 \Rightarrow l$ and m are of the same sign

10 **(c**)

The equation of the tangent at (4, -2) to $y^2 = x$ is

$$-2 y = \frac{1}{2}(x+4) \Rightarrow x+4 y+4 = 0$$

Its slope is -1/4. Therefore, the slope of the perpendicular line is 4. Since the tangents at the end points of a focan chord of a parabola are at right angles. Therefore, the slope of the tangent at Q is 4

11 **(a)**

The equation of a normal to $y^2 = 4x$ is

$$y + tx = 2t + t^3$$

If it passes through (3,0), then

$$3t = 2t + t^3 \Rightarrow t = 0, \pm 1$$

Putting the values of t in (i), we get

$$y = 0, y + x = 3$$
 and $y - x = -3$

As the equation of the normals

12 **(a)**

Let $\frac{x}{a}$ cos $\theta + \frac{y}{b}$ sin $\theta = 1$ be tangent at

 $P(a\cos\theta,b\sin\theta).$

Its cuts the coordinates axes at $P(asec \theta, 0)$ and $Q(0,b cosec \theta)$

 $\therefore CP = a \sec \theta \text{ and } CQ = b \csc \theta$

$$\Rightarrow \frac{a^2}{CP^2} + \frac{b^2}{CQ^2} = 1$$

13 **(c)**

Since, the equation of tangents x - y - 2 = 0 and x - y + 2 = 0 are parallel.

∴ Distance between them=Diameter of the circle = $\frac{2 - (-2)}{\sqrt{1^2 + 1^2}}$

$$\left(\because \frac{c_2 - c_1}{\sqrt{a^2 + b^2}}\right)$$
$$= \frac{4}{\sqrt{2}} = 2\sqrt{2}$$

 $\therefore \quad \text{Radius} = \frac{1}{2} (2\sqrt{2}) = \sqrt{2}$

It is clear from the figure that centre lies on the origin.

∴ Equation of circle is

$$(x-0)^2 + (y-0)^2 = (\sqrt{2})^2$$

$$\Rightarrow x^2 + y^2 = 2$$

Equation of family of concentric circles to the circle $x^2+y^2+6x+8y-5=0$ is $x^2+y^2+6x+8y+\lambda=0$ which is similar to $x^2+y^2+2gx+2fy+c=0$. Since, it is equation of concentric circle to the circle $x^2+y^2+6x+8y-5=0$. Thus, the point (-3,2) lies on the circle $x^2+y^2+6x+8y-5=0$.

$$+6x + 8y + c = 0$$

$$\Rightarrow (-3)^2 + (2)^2 + 6(-3) + 8(2) + c = 0$$

$$\Rightarrow$$
9 + 4 - 18 + 16 + c = 0

$$\Rightarrow c = -11$$

On solving the given equations, we get(0, 0), B(0,5/3), C(5/2, 0).

Let equation of circle be

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 ...(i)

Eq. (i) passes through A(0, 0), we get c = 0

Similarly, Eq. (i) passes through B(0,5/3) and C(5/2,0), we get

$$2f = -5/3$$
 and $2g = -5/2$

∴ Required equation of circle is

$$x^2 + y^2 - \frac{5}{2}x - \frac{5}{3}y = 0$$

$$\Rightarrow 6x^2 + 6y^2 - 15x - 10y = 0$$

We have,

$$OM = OA + AM = 2 + 5/2 = 9/2$$

So, the x-coordinate of the centre is 9/2

: Radius =
$$CA = \sqrt{(9/2 - 2)^2 + (k - 0)^2}$$

Hence, the equation of the circle is

$$(x-9/2)^2 + (y-k)^2 = \sqrt{(9/2-2)^2 + k^2}$$

$$\Rightarrow x^2 + y^2 - 9x - 2ky + 14 = 0$$

$$\begin{array}{c|c}
C\left(\frac{9}{2},k\right) \\
\hline
C\left(\frac{9}{2},k\right) \\
\hline
O & A(2,0) \\
\end{array}$$

$$\begin{array}{c|c}
B(7,0) \\
B(7,0)
\end{array}$$

Let $P(x_1,y_1)$ be a point on $x^2 + y^2 = a^2$. Then,

$$x_1^2 + y_1^2 = a^2 \qquad \dots (1$$

Let QR be the chord of contact of tangents drawn from $P(x_1,y_1)$ to the circle $x^2+y^2=b^2$. Then, the equation QR is

$$xx_1 + yy_1 = b^2$$
 ...(ii)

This touches the circle $x^2 + y^2 = c^2$

$$\left. \therefore \left| \frac{0x_1 + 0y_1 - b^2}{\sqrt{x_1^2 + y_1^2}} \right| = c \Rightarrow b^2 = ac \quad [U\sin : (i)]$$

Let *D* be the discriminant of $ax^2 + 2bx + c = 0$. Then,

$$D = 4(b^2 - ac) = 0$$
 [: $b^2 = ac$]

Hence, the roots of the given equal are real and equal

The equation of the line joining (3,3) and (-3,3) i.e. axis of the parabola is y-3=0.

Since the directrix is a line perpendicular to the axis. Therefore, its equation is $x + \lambda = 0$.

The directrix intersects with the axis at $(-\lambda,3)$ and the vertex is the mid point of the line segment joining the focus and the point of intersection of the directrix and axis

$$\therefore \frac{-\lambda - 3}{2} = 3 \Rightarrow \lambda = -9$$

So, the equation of the directrix is x - 9 = 0

Let P(x,y) be any point on the parabola. Then, by definition, we have

$$(x+3)^2 + (y-3)^2 = (x-9)^2$$

$$\Rightarrow y^2 - 6y + 24x - 63 = 0$$

Let the equation of the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

It is given that,

$$2 a = 3(2 b) \Rightarrow a^2 = 9 b^2 = a^2 = 9 a^2 (1 - e^2) \Rightarrow e = \frac{2\sqrt{2}}{3}$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	С	В	A	D	С	D	A	В	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	A	С	В	D	С	A	В	С	D

