CLASS : XIth
DATE :

Topic :- CONIC SECTION

1. The value of m, for which the line $y=m x+2$ becomes a tangent to the conic $4 x^{2}-9 y^{2}=36$ are
a) $\pm \frac{2}{3}$
b) $\pm \frac{2 \sqrt{2}}{3}$
c) $\pm \frac{8}{9}$
d) $\pm \frac{4 \sqrt{2}}{3}$
2. If the tangent at the point P on the circle $x^{2}+y^{2}+6 x+6 y=2$ meets the straight line. $5 x-2 y+6=0$ at a point Q on the y-axis, then the length of $P Q$ is
a) 4
b) $2 \sqrt{5}$
c) 5
d) $3 \sqrt{5}$
3. Consider a family of circles, which are passing through the point $(-1,1)$ and are tangent to x axis. If (h, k) are the coordinates of the centre of the circles, then the set of values of k is given by the interval
a) $0<k<\frac{1}{2}$
b) $k \geq \frac{1}{2}$
c) $-\frac{1}{2} \leq k \leq \frac{1}{2}$
d) $k \leq \frac{1}{2}$
4. The equation of the circle passing through the point $(1,1)$ and through the points of intersection of the circles $x^{2}+y^{2}=6$ amnd $x^{2}+y^{2}-6 y+8=0$ is
a) $x^{2}+y^{2}+3 y-13=0$
b) $x^{2}+y^{2}-3 y+1=0$
c) $x^{2}+y^{2}-3 x+1=0$
d) $5 x^{2}+5 y^{2}+6 y+16=0$
5. The number of distinct normal that can be drawn from $(11 / 4,1 / 4)$ to the parabola $y^{2}=4 x$, is
a) 3
b) 2
c) 1
d) 4
6. For the hyperbola $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$, which of the following remains constant when α varies?
a) Eccentricity
b) Directrix
c) Abscissae of vertices
d) Abscissae of foci
7. The equation of the circumcircle of the triangle formed by the lines $x=0, y=0,2 x+3 y=5$, is
a) $6\left(x^{2}+y^{2}\right)+5(3 x-2 y)=0$
b) $x^{2}+y^{2}-2 x-3 y+5=0$
c) $x^{2}+y^{2}+2 x-3 y-5=0$
d) $6\left(x^{2}+y^{2}\right)-5(3 x+2 y)=0$
8. If t_{1} and t_{2} be the parameters of the end points of a focal chord for the parabola $y^{2}=4 a x$, then which one is true?
a) $t_{1} t_{2}=1$
b) $\frac{t_{1}}{t_{2}}=1$
c) $t_{1} t_{2}=-1$
d) $t_{1}+t_{2}=-1$
9. The two circles
$x^{2}+y^{2}-2 x+22 y+5=0$ and
$x^{2}+y^{2}+14 x+6 y+k=0$ intersect orthogonally provided k is equal to
a) 47
b) -47
c) 49
d) -49
10. The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight line $y=m x+c$ intersect in real points only if
a) $a^{2} m^{2}<c^{2}-b^{2}$
b) $a^{2} m^{2}>c^{2}-b^{2}$
c) $a^{2} m^{2} \geq c^{2}-b^{2}$
d) $c \geq b$
11. If four points to be taken on a rectangular hyperbola such that the chord joining any two is perpendicular to the chord joining the other two and if $\alpha, \beta, \gamma, \delta$ be the inclination to either asymptote of the straight line joining these points to the centre. Then, $\tan \alpha \tan \beta \tan \gamma \tan \delta$ is equal to
a) 1
b) 0
c) 2
d) 3
12. If the distance between the foci and the distance between the directrices of the hyperbola $\frac{x^{2}}{a^{2}}-$ $\frac{y^{2}}{b^{2}}=1$ are in the ratio $3: 2$, then $a: b$ is
а) $\sqrt{2}: 1$
b) $\sqrt{3}: \sqrt{2}$
c) $1: 2$
d) $2: 1$
13. If m_{1} and m_{2} are the slopes of tangents to the circle $x^{2}+y^{2}=4$ from the point $(3,2)$, then m_{1} $-m_{2}$ is equal to
a) $\frac{5}{12}$
b) $\frac{12}{5}$
c) $\frac{3}{2}$
d) 0
14. The length of the axes of the conic $9 x^{2}+4 y^{2}-6 x+4 y+1=0$, are
a) $\frac{1}{2}, 9$
b) $3, \frac{2}{5}$
c) $1, \frac{2}{3}$
d) 3,2
15. For different values of α, the locus of the point of intersection of the two straight lines $\sqrt{3}$ $x-y-4 \sqrt{3} \alpha=0$ and $\sqrt{3} \alpha x+\alpha y-4 \sqrt{3}=0$ is
a) a hyperbola with eccentricity 2
b) an ellipse with eccentricity $\sqrt{\frac{2}{3}}$
c) an hyperbola with eccentricity $\sqrt{\frac{19}{16}}$
d) an ellipse with eccentricity $\frac{3}{4}$
16. If the area of the circle $4 x^{2}+4 y^{2}-8 x+16 y+k=0$ is 9π sq unit, then the 4 value of k is
a) 4
b) 16
c) -16
d) ± 16
17. $A B C D$ is a square whose side is a. The equation of the circle circumscribing the square, taking $A B$ and $A D$ as axes of reference, is
a) $x^{2}+y^{2}+a x+a y=0$
b) $x^{2}+y^{2}+a x-a y=0$
c) $x^{2}+y^{2}-a x-a y=0$
d) $x^{2}+y^{2}-a x+a y=0$
18. If the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ bisects the circumference of the circle $x^{2}+y^{2}+2 g^{\prime}$ $x+2 f^{\prime} y+c^{\prime}=0$, then
a) $2 g\left(g-g^{\prime}\right)+2 f\left(f-f^{\prime}\right)=c-c^{\prime}$
b) $2 g^{\prime}\left(g-g^{\prime}\right)+2 f^{\prime}\left(f-f^{\prime}\right)=c^{\prime}-c$
c) $2 g^{\prime}\left(g-g^{\prime}\right)+2 f^{\prime}\left(f-f^{\prime}\right)=c-c^{\prime}$
d) $2 g\left(g-g^{\prime}\right)+2 f\left(f-f^{\prime}\right)=c^{\prime}-c$
19. If the parabolas $y^{2}=4 x$ and $x^{2}=32 y$ intersect at $(16,8)$ at an angle θ, then θ is equal to
a) $\tan ^{-1}(3 / 5)$
b) $\tan ^{-1}(4 / 5)$
c) π
d) $\pi / 2$
20. The equation of the circle, which cuts orthogonally each of three circles
$x^{2}+y^{2}-2 x+3 y-7=0$,
$x^{2}+y^{2}+5 x-5 y+9=0$
and $x^{2}+y^{2}+7 x-9 y+29=0$
a) $x^{2}+y^{2}-16 x-18 y-4=0$
b) $x^{2}+y^{2}=a^{2}$
c) $x^{2}+y^{2}-16 x=0$
d) $y^{2}-x^{2}+2 x=0$
