CLASS : XIth
DATE :

Topic :- CONIC SECTION

1. A rectangular hyperbola whose centre is C is cut by any circle of radius r in four points P, Q, R and S. Then, $C P^{2}+C Q^{2}+C R^{2}+C S^{2}=$
a) r^{2}
b) $2 r^{2}$
c) $3 r^{2}$
d) $4 r^{2}$
2. If $P Q$ is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that $O P Q$ is an equilateral triangle, O being the centre of the hyperbola. Then, the eccentricity e of the hyperbola satisfies
a) $1<e<\frac{2}{\sqrt{3}}$
b) $e=\frac{2}{\sqrt{3}}$
c) $e=\frac{\sqrt{3}}{2}$
d) $e>\frac{2}{\sqrt{3}}$
3. If e and e_{1}, are the eccentricities of the hyperbolas $x y=c^{2}$ and $x^{2}-y^{2}=c^{2}$, then $e^{2}+e_{1}^{2}$ is equal to
a) 1
b) 4
c) 6
d) 5
4. If e and e_{1} are the eccentricities of hyperbolas $x y=c^{2}$ and $x^{2}-y^{2}=c^{2}$, then $e^{2}+e_{1}^{2}$ is
a) 1
b) 4
c) 6
d) 8
5. The eccentricity of the hyperbola in the standard form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, passing through $(3,0)$ and ($3, \sqrt{2}, 2$) is
a) $\frac{13}{3}$
b) $\sqrt{13}$
c) $\sqrt{3}$
d) $\frac{\sqrt{13}}{3}$
6. Which of the following is a point on the common chord of the circles $x^{2}+y^{2}+2 x-3 y+6=0$ and $x^{2}+y^{2}+x-8 y-13=0$?
a) $(1,-2)$
b) $(1,4)$
c) $(1,2)$
d) $(1,-4)$
7. If the chord of contact of tangents drawn from a point P to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ subtends a right-angle at its centre, then P lies on
a) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
b) $\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}=\left(\frac{1}{a}+\frac{1}{b}\right)^{2}$
c) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{a^{4}}+\frac{1}{b^{4}}$
d) $\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
8. The locus of a point which moves such that the difference of its distances from two fixed points is always a constant, is
a) a circle
b) a straight line
c) a hyperbola
d) an ellipse
9. Eccentricity of the ellipse $x^{2}+2 y^{2}-2 x+3 y+2=0$ is
a) $\frac{1}{\sqrt{2}}$
b) $\frac{1}{2}$
c) $\frac{1}{2 \sqrt{2}}$
d) $\frac{1}{\sqrt{3}}$
10. If e is the eccentricity of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and θ be the angle between the asymptotes, then $\sec \frac{\theta}{2}$ equals
a) e^{2}
b) $\frac{1}{e}$
c) $2 e$
d) e
11. If $P(-3,2)$ is one end of the focal chord $P Q$ of the parabola $y^{2}+4 x+4 y=0$, then the slope of the normal at Q is
a) $-1 / 2$
b) 2
c) $1 / 2$
d) -2
12. The equation of the circumcircle of the triangle formed by the lines $y+\sqrt{3} x=6, y-\sqrt{3} x=6$ and $y=0$ is
a) $x^{2}+y^{2}-4 y=0$
b) $x^{2}+y^{2}+4 x=0$
c) $x^{2}+y^{2}-4 y-12=0$
d) $x^{2}+y^{2}+4 x=12$
13. The centre of the circle $r^{2}-4 r(\cos \theta+\sin \theta)-4=0$ in Cartesian coordinates is
a) $(1,1)$
b) $(-1,-1)$
c) $(2,2)$
d) $(-2,-2)$
14. The locus of the middle of chords of length 4 of the circle $x^{2}+y^{2}=16$ is
a) A straight line
b) A circle of radius 2
c) A circle of radius $2 \sqrt{3}$
d) An ellipse
15. The normal at P to a hyperbola of eccentricity e, intersects its transverse and conjugate axes at L and M respectively. If locus of the mid point of $L M$ is hyperbola, then eccentricity of the hyperbola is
a) $\left(\frac{e+1}{e-1}\right)$
b) $\frac{e}{\sqrt{\left(e^{2}-1\right)}}$
c) e
d) None of these
16. If the chords of the rectangular hyperbola $x^{2}-y^{2}=a^{2}$ touch the parabola $y^{2}=4 a x$, then the locus of their mid-points is
a) $x^{2}(y-a)=y^{3}$
b) $y^{2}(x-a)=x^{3}$
c) $x\left(y^{2}-a\right)=y$
d) $y\left(x^{2}-a\right)=x$
17. If the tangent at point P on the circle $x^{2}+y^{2}+6 x+6 y-2=0$ meets the straight line $5 x-2 y+6=0$ at a point Q on the y-axis, then length $P Q$
a) 4
b) $2 \sqrt{5}$
c) 5
d) $3 \sqrt{5}$
18. An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm , the necessary length of the string and the distance between the pins respectively in cms. are
a) $6,2 \sqrt{5}$
b) $6, \sqrt{5}$
c) $4,2 \sqrt{5}$
d) None of these
19. The slope of tangents drawn form a point $(4,10)$ to the parabola $y^{2}=9 x$ are
a) $\frac{13}{4}, \frac{1}{4}$
b) $\frac{1}{4}, \frac{9}{4}$
c) $\frac{1}{4}, \frac{1}{3}$
d) None of these
20. The area of the triangle formed by the tangents from the point $(4,3)$ to the circle $x^{2}+y^{2}=9$ and the line joining their points of contact, is
a) $\quad \frac{25}{192}$ sq. units
b) $\quad \frac{192}{25}$ sq.units
c) $\quad \frac{384}{25}$ sq.units
d) None of these

