

CLASS: XIth DATE:

Solutions

SUBJECT: MATHS DPP NO.: 2

1. The equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a rectangular hyperbola if

a) $\Delta \neq 0$, $h^2 > ab$, a + b = 0

- b) $\Delta \neq 0, h^2 < ab, a + b = 0$
- c) $\Delta \neq 0, h^2 = ab, a + b = 0$
- d) None of these
- 2. The line passing through the extremity *A* of the major axis and extremity *B* of the minor axis of the ellipse $x^2 + 9y^2 = 9$ meets its auxiliary circle at the point M. Then, the area of the triangle with vertices at A, M and the origin O is
 - a) $\frac{31}{10}$

b) $\frac{29}{10}$

c) $\frac{21}{10}$

- d) $\frac{27}{10}$
- 3. From the point (-1, -6) two tangents are drawn to the parabola $y^2 = 4x$. Then, the angle between the two tangents is
 - a) 30°

b) 45°

c) 60°

- d)90°
- 4. The centre of the ellipse $4x^2 + 9y^2 + 16x 18y 11 = 0$ is
 - a) (-2, -1)
- b) (-2,1)
- c) (2, -1)
- d) None of these
- The circle whose equation are $x^2 + y^2 + c^2 = 2ax$ and $x^2 + y^2 + c^2 2by = 0$ will touch one another externally if

 - a) $\frac{1}{h^2} + \frac{1}{c^2} = \frac{1}{a^2}$ b) $\frac{1}{c^2} + \frac{1}{a^2} = \frac{1}{b^2}$ c) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$
- d) None of these
- 6. In an ellipse the distance between the foci is 8 and the distance between the directrices is 25. The length of major axis is
 - a) $10\sqrt{2}$
- b) $20\sqrt{2}$
- c) $30\sqrt{2}$
- d) None of these
- 7. If lx + my + n = 0 represents a chord of the ellipse $b^2x^2 + a^2y^2 = a^2b^2$ whose eccentric angles differ by 90°, then
 - a) $a^2l^2 + b^2m^2 = n^2$

b) $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{(a^2 - b^2)^2}{m^2}$

c) $a^2l^2 + b^2m^2 = 2n^2$

- d) None of these
- 8. If the latusrectum of a hyperbola forms an equilateral triangle with the vertex at the centre of the hyperbola, then the eccentricity of the hyperbola is
 - a) $\frac{\sqrt{5}+1}{2}$
- b) $\frac{\sqrt{11} + 1}{1}$
- c) $\frac{\sqrt{13}+1}{2\sqrt{2}}$
- d) $\frac{\sqrt{13}-1}{2\sqrt{3}}$

- 9. The eccentricity of the conic $4x^2 + 16y^2 24x 32y = 1$ is a) $\frac{1}{2}$ b) $\sqrt{3}$ c) $\frac{\sqrt{3}}{2}$ d) $\frac{\sqrt{3}}{4}$ 10. If the chords of contact of tangents from two points (x_1, y_1) and (x_2, y_2) to the hyperbola $4x^2 9y^2 36 = 0$ are at right angles, then $\frac{x_1x_2}{y_1y_2}$ is equal to a) $\frac{9}{4}$ b) $-\frac{9}{4}$ c) $\frac{81}{16}$ d) $-\frac{81}{16}$
- 11. The equation of a circle which cuts the three circles $x^2 + y^2 2x 6y + 14 = 0$ $x^2 + y^2 x 4y + 8 = 0$ $x^2 + y^2 + 2x 6y + 9 = 0$ orthogonally, is
 - a) $x^2 + y^2 2x 4y + 1 = 0$ b) $x^2 + y^2 + 2x + 4y + 1 = 0$ c) $x^2 + y^2 - 2x + 4y + 1 = 0$ d) $x^2 + y^2 - 2x - 4y - 1 = 0$
- 12. The length of the common chord of the ellipse $\frac{(x-1)^2}{9} + \frac{(y-2)^2}{4} = 1$ and the circle $(x-1)^2 + (y-2)^2 = 1$ is

 a) 2 b) $\sqrt{3}$ c) 4 d) None of these
- 13. The mirror image of the directrix of the parabola $y^2 = 4(x+1)$ in the line mirror x + 2y = 3, is a) x = -2 b) 4y 3x = 16 c) x 3y = 0 d) x + y = 0
- 14. The line $x = at^2$ meets the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the real points, if a) |t| < 2 b) $|t| \le 1$ c) |t| > 1 d) None of these
- 15. The length of the latusrectum of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = -1$, is a) $\frac{2a^2}{b}$ b) $\frac{2b^2}{a}$ c) $\frac{b^2}{a}$ d) $\frac{a^2}{b}$
- 16. The condition that the chord $x\cos\alpha = 0 + y\sin\alpha p = 0$ of $x^2 + y^2 a^2 = 0$ may subtend a right angle at the centre of the circle is a) $a^2 = 2p^2$ b) $p^2 = 2a^2$ c) a = 2p d) p = 2a
- 17. Given that circle $x^2 + y^2 2x + 6y + 6 = 0$ and $x^2 + y^2 5x + 6y + 15 = 0$ touch, the equation to their common tangent is

 a) x = 3 b) y = 6 c) 7x 12y 21 = 0 d) 7x + 12y + 21 = 0

- 18. The number of common tangents of the circles $x^2 + y^2 2x 1 = 0$ and $x^2 + y^2 2y 7 = 0$ is a) 1 c) 3
- 19. A ray of light incident at the point (-2, -1) gets reflected from the tangent at (0, -1) to the circle $x^2 + y^2 = 1$. The reflected ray touches the circle. The equation of the line along which the incident ray moved is
 - a) 4x 3y + 11 = 0
- b) 4x + 3y + 11 = 0 c) 3x + 4y + 11 = 0
- d) None of these
- 20. If the points A(2,5) and B are symmetrical about the tangent to the circle $x^2 + y^2 4x + 4y = 0$ at the origin, then the coordinates of *B* are
 - a) (5, -2)
- b)(1,5)
- c) (5,2)
- d) None of these

