CLASS : XIth
DATE :

Topic :- CONIC SECTION

1. The equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a rectangular hyperbola if
a) $\Delta \neq 0, h^{2}>a b, a+b=0$
b) $\Delta \neq 0, h^{2}<a b, a+b=0$
c) $\Delta \neq 0, h^{2}=a b, a+b=0$
d) None of these
2. The line passing through the extremity A of the major axis and extremity B of the minor axis of the ellipse $x^{2}+9 y^{2}=9$ meets its auxiliary circle at the point M. Then, the area of the triangle with vertices at A, M and the origin O is
a) $\frac{31}{10}$
b) $\frac{29}{10}$
c) $\frac{21}{10}$
d) $\frac{27}{10}$
3. From the point $(-1,-6)$ two tangents are drawn to the parabola $y^{2}=4 x$. Then, the angle between the two tangents is
a) 30°
b) 45°
c) 60°
d) 90°
4. The centre of the ellipse $4 x^{2}+9 y^{2}+16 x-18 y-11=0$ is
a) $(-2,-1)$
b) $(-2,1)$
c) $(2,-1)$
d) None of these
5. The circle whose equation are $x^{2}+y^{2}+c^{2}=2 a x$ and $x^{2}+y^{2}+c^{2}-2 b y=0$ will touch one another externally if
a) $\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{a^{2}}$
b) $\frac{1}{c^{2}}+\frac{1}{a^{2}}=\frac{1}{b^{2}}$
c) $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$
d) None of these
6. In an ellipse the distance between the foci is 8 and the distance between the directrices is 25 . The length of major axis is
a) $10 \sqrt{2}$
b) $20 \sqrt{2}$
c) $30 \sqrt{2}$
d) None of these
7. If $l x+m y+n=0$ represents a chord of the ellipse $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ whose eccentric angles differ by 90°, then
a) $a^{2} l^{2}+b^{2} m^{2}=n^{2}$
b) $\frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}-b^{2}\right)^{2}}{n^{2}}$
c) $a^{2} l^{2}+b^{2} m^{2}=2 n^{2}$
d) None of these
8. If the latusrectum of a hyperbola forms an equilateral triangle with the vertex at the centre of the hyperbola, then the eccentricity of the hyperbola is
a) $\frac{\sqrt{5}+1}{2}$
b) $\frac{\sqrt{11}+1}{2}$
c) $\frac{\sqrt{13}+1}{2 \sqrt{3}}$
d) $\frac{\sqrt{13}-1}{2 \sqrt{3}}$
9. The eccentricity of the conic $4 x^{2}+16 y^{2}-24 x-32 y=1$ is
a) $\frac{1}{2}$
b) $\sqrt{3}$
c) $\frac{\sqrt{3}}{2}$
d) $\frac{\sqrt{3}}{4}$
10. If the chords of contact of tangents from two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ to the hyperbola $4 x^{2}$ $-9 y^{2}-36=0$ are at right angles, then $\frac{x_{1} x_{2}}{y_{1} y_{2}}$ is equal to
a) $\frac{9}{4}$
b) $-\frac{9}{4}$
c) $\frac{81}{16}$
d) $-\frac{81}{16}$
11. The equation of a circle which cuts the three circles
$x^{2}+y^{2}-2 x-6 y+14=0$
$x^{2}+y^{2}-x-4 y+8=0$
$x^{2}+y^{2}+2 x-6 y+9=0$
orthogonally, is
a) $x^{2}+y^{2}-2 x-4 y+1=0$
b) $x^{2}+y^{2}+2 x+4 y+1=0$
c) $x^{2}+y^{2}-2 x+4 y+1=0$
d) $x^{2}+y^{2}-2 x-4 y-1=0$
12. The length of the common chord of the ellipse $\frac{(x-1)^{2}}{9}+\frac{(y-2)^{2}}{4}=1$ and the circle $(x-1)^{2}+$ $(y-2)^{2}=1$ is
a) 2
b) $\sqrt{3}$
c) 4
d) None of these
13. The mirror image of the directrix of the parabola $y^{2}=4(x+1)$ in the line mirror $x+2 y=3$, is
a) $x=-2$
b) $4 y-3 x=16$
c) $x-3 y=0$
d) $x+y=0$
14. The line $x=a t^{2}$ meets the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in the real points, if
a) $|t|<2$
b) $|t| \leq 1$
c) $|t|>1$
d) None of these
15. The length of the latusrectum of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$, is
a) $\frac{2 a^{2}}{b}$
b) $\frac{2 b^{2}}{a}$
c) $\frac{b^{2}}{a}$
d) $\frac{a^{2}}{b}$
16. The condition that the chord $x \cos \alpha=0+y \sin \alpha-p=0$ of $x^{2}+y^{2}-a^{2}=0$ may subtend a right angle at the centre of the circle is
a) $a^{2}=2 p^{2}$
b) $p^{2}=2 a^{2}$
c) $a=2 p$
d) $p=2 a$
17. Given that circle $x^{2}+y^{2}-2 x+6 y+6=0$ and $x^{2}+y^{2}-5 x+6 y+15=0$ touch, the equation to their common tangent is
a) $x=3$
b) $y=6$
c) $7 x-12 y-21=0$
d) $7 x+12 y+21=0$
18. The number of common tangents of the circles $x^{2}+y^{2}-2 x-1=0$ and $x^{2}+y^{2}-2 y-7=0$ is
a) 1
b) 2
c) 3
d) 4
19. A ray of light incident at the point $(-2,-1)$ gets reflected from the tangent at $(0,-1)$ to the circle $x^{2}+y^{2}=1$. The reflected ray touches the circle. The equation of the line along which the incident ray moved is
a) $4 x-3 y+11=0$
b) $4 x+3 y+11=0$
c) $3 x+4 y+11=0$
d) None of these
20. If the points $A(2,5)$ and B are symmetrical about the tangent to the circle $x^{2}+y^{2}-4 x+4 y=0$ at the origin, then the coordinates of B are
a) $(5,-2)$
b) $(1,5)$
c) $(5,2)$
d) None of these

