CLASS : XIth DATE :

2
(d)

Equation of auxiliary circle is

$$
\begin{equation*}
x^{2}+y^{2}=9 \tag{i}
\end{equation*}
$$

Equation of $A M$ is $\frac{x}{3}+\frac{y}{1}=1 \ldots$ (ii)
On solving Eqs. (i) and (ii), we get $M\left(-\frac{12}{5}, \frac{9}{5}\right)$
Now, area of $\triangle A O M=\frac{1}{2} . O A \times M N$
$=\frac{27}{10}$ squnit
3
(d)

Equation of tangent to $y^{2}=4 x$ is $y=m x+\frac{1}{m}$
Since, tangent passes through $(-1,-6)$
$\therefore-6=-m+\frac{1}{m} \Rightarrow m^{2}-6 m-1=0$
Here, $m_{1} m_{2}=-1$
\therefore Angle between them is 90°
4
(b)

The equation of the ellipse is
$4\left(x^{2}+4 x+4\right)+9\left(y^{2}-2 y+1\right)=36 \Rightarrow \frac{(x+2)^{2}}{3^{2}}+\frac{(y-1)^{2}}{2^{2}}=1$
So, the coordinates of the centre are $(-2,1)$
5
(c)

The two circles are
$x^{2}+y^{2}-2 a x+c^{2}=0$ and $x^{2}+y^{2}-2 b y+c^{2}=0$
Centres and radii of these two circles are :
Centres: $C_{1}(a, 0)$
$C_{2}(0, b)$
Radii : $r_{1}=\sqrt{a^{2}-c^{2}}$
$r_{2}=\sqrt{b^{2}-c^{2}}$
Since the two circles touch each other externally.
$\therefore C_{1} C_{2}=r_{1}+r_{2}$
$\Rightarrow \sqrt{a^{2}+b^{2}}=\sqrt{a^{2}-c^{2}}+\sqrt{b^{2}-c^{2}}$
$\Rightarrow a^{2}+b^{2}=a^{2}-c^{2}+b^{2}-c^{2}+2 \sqrt{a^{2}-c^{2}} \sqrt{b^{2}-c^{2}}$
$\Rightarrow c^{4}=a^{2} b^{2}-c^{2}\left(a^{2}+b^{2}\right)+c^{4}$
$\Rightarrow a^{2} b^{2}=c^{2}\left(a^{2}+b^{2}\right) \Rightarrow \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$
6 (a)
It is given that $2 a e=8$ and $\frac{2 a}{e}=25$
$\Rightarrow 2 a e \times \frac{2 a}{e}=8 \times 25 \Rightarrow 4 a^{2}=200 \Rightarrow a=5 \sqrt{2} \Rightarrow 2 a=10 \sqrt{2}$
7 (c)
Equation of chord joining points $P(a \cos \alpha, b \sin \alpha)$ and $Q(a \cos \beta, b \sin \beta)$ is
$\frac{x}{a} \cos \left(\frac{\alpha+\beta}{2}\right)+\frac{y}{b} \sin \left(\frac{\alpha+\beta}{2}\right)=\cos \left(\frac{\alpha-\beta}{2}\right)$
Now, $\beta=\alpha+90^{\circ}$
$\frac{x}{a} \cos \left(\frac{2 \alpha+90^{\circ}}{2}\right)+\frac{y}{b} \sin \left(\frac{2 \alpha+90^{\circ}}{2}\right)=\frac{1}{\sqrt{2}}$
now, compare it with $l x+m y=-n$, we get
$\frac{\cos \left(\frac{2 \alpha+90^{\circ}}{2}\right)}{a l}=\frac{\sin \left(\frac{2 \alpha+90^{\circ}}{2}\right)}{b m}=-\frac{1}{\sqrt{2} n}$
$\because \cos ^{2} \theta+\sin ^{2} \theta=1$
$\Rightarrow a^{2} l^{2}+b^{2} m^{2}=2 n^{2}$
8 (c)
Let $L S L^{\prime \prime}$ be a latusrectum and C be the centre of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. It is given that $C L L^{\prime \prime}$ is equilateral triangle. Therefore, $\angle L C S=30^{\circ}$
In $\triangle C S L$, we have
$\tan 30^{\circ}=\frac{S L}{C S}$

$\Rightarrow \frac{1}{\sqrt{3}}=\frac{b^{2} / a}{a e}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{b^{2}}{a^{2} e}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{e^{2}-1}{e} \Rightarrow \sqrt{3} e^{2}-e-\sqrt{3}=0 \Rightarrow e=\frac{1+\sqrt{13}}{2 \sqrt{3}}$
9
(c)

Given equation can be rewritten as
$\Rightarrow 4\left(x^{2}-6 x+9\right)+16\left(y^{2}-2 y+1\right)-36-6=1$
$\Rightarrow \frac{(x-3)^{2}}{\frac{53}{4}}+\frac{(y-1)^{2}}{\frac{53}{16}}=1$
Here , $a^{2}=\frac{53}{4}$ and $b^{2}=\frac{53}{16}$
\therefore Eccentricity of ellipse is $e=\frac{\sqrt{a^{2}-b^{2}}}{a^{2}}$
$\Rightarrow e=\frac{\sqrt{\frac{53}{4}-\frac{53}{16}}}{\frac{53}{4}}$
$\Rightarrow e=\frac{\sqrt{3}}{2}$
10 (d)
The equation of hyperbola is
$4 x^{2}-9 y^{2}=36$
$\Rightarrow \frac{x^{2}}{9}-\frac{y^{2}}{4}=1$
The equation of the chords of contact of tangents from $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ to the given hyperbola are
$\frac{x x_{1}}{9}-\frac{y y_{1}}{4}=1$
and $\frac{x x_{2}}{9}-\frac{y y_{2}}{4}=1$
Lines (ii) and (iii) are at right angles.
$\therefore \frac{9}{4} \cdot \frac{x_{1}}{y_{1}} \times \frac{4}{9} \cdot \frac{x_{2}}{y_{2}}=-1$
$\Rightarrow \frac{x_{1} x_{2}}{y_{1} y_{2}}=-\left(\frac{9}{4}\right)^{2}=-\frac{81}{16}$
11 (a)
The circle having centre at the radical centre of three given circles and radius equal to the length of the tangent from it to any one of three circles cuts all the three circles orthogonally. The given circles are
$x^{2}+y^{2}-3 x-6 y+14=0$
$x^{2}+y^{2}-x-4 y+8=0$
$x^{2}+y^{2}+2 c-6 y+9=0$
The radical axes of (i), (ii) and (ii), (iii) are respectively
$x+y-3=0$
and, $3 x-2 y+1=0$
Solving (iv) and (v), we get $x=1, y=2$
Thus, the coordinates of the radical centre are (1,2)
The length of the tangent from $(1,2)$ to circle (i) is given by
$r=\sqrt{1+4-3-12+14}=2$
Hence, the required circle is
$(x-1)^{2}+(y-2)^{2}=2^{2} \Rightarrow x^{2}+y^{2}-2 x-4 y+1=0$
12
(d)

It is clear from the figure that the two curves do not intersect each other

13
(b)

Directrix of $y^{2}=4(x+1)$ is $x=-2$. Any point on $x=-2$ is $(-2, k)$
Now mirror image (x, y) of $(-2, k)$ in the line $x+2 y=3$ is given by
$\frac{x+2}{1}=\frac{y-k}{2}=-2\left(\frac{-2+2 k-3}{5}\right)$
$\Rightarrow x=\frac{10-4 k}{5}-2$
$\Rightarrow x=-\frac{4 k}{5}$
And $y=\frac{20-8 k}{5}+k$
$\Rightarrow y=\frac{20-3 k}{5}$
From Eqs. (i) and (ii), we get
$y=4+\frac{3}{5}\left(\frac{5 x}{4}\right)$
$\Rightarrow y=4+\frac{3 x}{4}$
$\Rightarrow 4 y=16+3 x$ is the equation of the mirror image of the directrix

14
 (b)

Putting $x=a t^{2}$ in $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$,
We get, $t^{4}+\frac{y^{2}}{b^{2}}=1$
$i e, y^{2}=b^{2}\left(1-t^{4}\right)=b^{2}\left(1+t^{2}\right)\left(1-t^{2}\right)$
y is real, if $1-t^{2} \geq 0$
$i e,|t| \leq 1$
16
(a)

The combined equation of the lines joining the origin to the points of intersection of x $\cos \alpha+y \sin \alpha=p$ and $x^{2}+y^{2}-a^{2}=0$ is a homogeneous equation of second degree given by
$x^{2}+y^{2}-a^{2}\left(\frac{x \cos \alpha+y \sin \alpha}{p}\right)^{2}=0$
$\Rightarrow x^{2}\left(p^{2}-a^{2} \cos ^{2} \alpha\right)+y^{2}\left(p^{2}-a^{2} \sin ^{2} \alpha\right)-\left(\alpha^{2} \sin 2 \alpha\right) x y=0$
The lines given by this equation are at right angle
Coeff. of $x^{2}+$ Coeff. of $y^{2}=0$
$\Rightarrow p^{2}-a^{2} \cos ^{2} \alpha+p^{2}-a^{2} \sin ^{2} \alpha=0 \Rightarrow 2 p^{2}=a^{2}$
17

(a)

Using $S_{1}-S_{2}=0$, we obtain $3 x-9=0$ or, $x=3$ as the equation of the required common tangent 18
(a)

Since the difference of the radii of two circles is equal to the distance between their centres.
Therefore, two circles touch each other internally and so only one common tangent can be drawn to given two circles
19
(b)

Clearly, the incidence ray passes through the point $P(-2,-1)$ and the image of any point Q on $B P$ is $y=-1$

Let us find the equation of $P B$. Let its equation be $y+1=m(x+2)$
It touches the circle $x^{2}+y^{2}=1$
$\therefore\left|\frac{2 m-1}{\sqrt{m^{2}+1}}\right|=1 \Rightarrow m=0, \frac{4}{3}$
So, the equation of $P B$ is
$y+1=\frac{4}{3}(x+2)$ or, $4 x-3 y+5=0$
Let $Q(-5,5)$ be a point on $P B$. The image of Q in $y=-1$ is $R(-5,3)$. So, the equation of $R P$ is
$y-3=\frac{3+1}{-5+2}(x+5)$ or, $4 x+3 y+11=0$
20
(c)

The equation of the tangent to the given circle at the origin is $y=x$. Image of the point $A(2,5)$ in $y=x$ is $(5,2)$.
Thus, the coordinates of B are $(5,2)$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | C | D | D | B | C | A | C | C | C | D |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | A | D | B | B | A | A | A | A | B | C |
| | | | | | | | | | | |

