

CLASS : XIth DATE :

Solutions

SUBJECT : MATHS DPP NO. : 10

d) None of these

Topic:-conic section

1. If the circle $x^2 + y^2 + 4x + 22y + c = 0$ bisects the circumference of the circle $x^2 + y^2 - 2x + 8y - d = 0$, then c + d is equal to a) 30 b) 50 c) 40 d) 56

2. If *C* is the centre of the ellipse $9x^2 + 16y^2 = 144$ and *S* is one focus. The ratio of *CS* to major axis, is

a) $\sqrt{7}$:16 b) $\sqrt{7}$:4 c) $\sqrt{5}$: $\sqrt{7}$

3. The angle between the normal to the parabola $y^2 = 24 x$ at points (6,12) and (6, -12), is a) 30° b) 45° c) 60° d) 90°

4. If the circle $C_1:x^2 + y^2 = 16$ intersects another circle C_2 of radius 5 in such a manner that the common chord is of maximum length and has a slope equal to 3/4, the coordinates of the centre of C_2 are

a) (-9/5,12/5),(9/5, -12/5) b) (-9/5, -12/5),(9/5,12/5) c) (12/5, -9/5),(-12/5,9/5)

d) None of these

5. The normal at the point $(bt_{1,2}^2bt_1)$ on a parabola $y^2 = 4bv$ meets the parabola again int he point $(bt_{2,2}^2, 2bt_2)$, then

a)
$$t_2 = -t_1 - \frac{2}{t_1}$$
 b) $t_2 = -t_1 - \frac{2}{t_1}$ c) $t_2 = t_1 - \frac{2}{t_1}$ d) $t_2 = t_1 + \frac{2}{t_1}$

6. Equation of tangents to the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$, which are perpendicular to the line 3x + 4y = 7, are

a) $4x - 3y = \pm 6\sqrt{5}$ b) $4x - 3y = \pm \sqrt{12}$ c) $4x - 3y = \pm \sqrt{2}$ d) $4x - 3y = \pm 1$

7. Any point on the hyperbola $\frac{(x+1)^2}{16} - \frac{(y-2)^2}{4} = 1$ is of the forma) $(4 \sec \theta, 2\tan \theta)$ b) $(4 \sec \theta + 1, 2\tan \theta - 2)$ c) $(4 \sec \theta - 1, 2\tan \theta - 2)$ d) $(4 \sec \theta - 1, 2\tan \theta + 2)$

8. The distances from the foci of point $P(x_1, y_1)$ on the ellipse $\frac{x^2}{9} + \frac{y^2}{25} = 1$ are

	a) $4 \pm \frac{5}{4}y_1$	b) $5 \pm \frac{4}{5}x_1$	c) $5 \pm \frac{4}{5}y_1$	d)None of these	
9.	The locus of the points a) $y^2 = ax$	of trisection of the doub b) 9 $y^2 = 4 ax$	ble ordinates of the para c) 9 $y^2 = ax$	bola $y^2 = 4ax$ is d) $y^2 = 9ax$	
10. The tangent drawn at any point <i>P</i> to the parabola $y^2 = 4ax$ meets the directrix at the point <i>K</i> , then the angle which <i>KP</i> subtends at its focus is					
	a) 30°	b)45°	c) 60°	d)90°	
11. The set of values of 'c' so that the equation $y = x + c$ and $x^2 + y^2 - 8 x - 9 = 0$ have no solution, is					
	a) $(-\infty, -3) \cup (3, \infty)$ c) $(-\infty, 5\sqrt{2}) \cup (5\sqrt{2}, -\infty)$	∞)	b) $(-3, 3)$ d) $(5\sqrt{2}-4, \infty)$		
12. The radius of the circle passing through the point (6, 2) and two of whose diameters are $x + y = 6$ and $x + 2y = 4$, is					
	a) 4	b)6	c) 20	d) $\sqrt{20}$	
13. The coordinates of the point on the circle $x^2 + y^2 - 12x - 4y + 30 = 0$, which is farthest from the origin are					
	a) (9,3)	b) (8,5)	c) (12,4)	d)None of these	
14. The points of contact of tangents to the circle $x^2 + y^2 = 25$ which are inclined at an angle of 30 to the x-axis are					
	a) $(\pm 5/2, \pm 1/2)$	b) (± 1/2, ± 5/2)	c) (∓ 5/2,∓1/2)	d)None of these	
15.	How many real tangen a) 2	ts can be drawn to the e	llipse $5x^2 + 9y^2 = 32$ for c) 0	rm the point (2, 3)? d)3	
16.	If the line $2x + \sqrt{6}y = 2$	2 touches the hyperbola	$x^2 - 2y^2 = 4$, then the period	oint of contact is	
	a) (−2, √6)	b) (− 5, 2√6)	c) $\left(\frac{1}{2}, \frac{1}{\sqrt{6}}\right)$	d) (4, $-\sqrt{6}$)	
17.	7. The locus of the mid-points of focal chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, is				
	a) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{x}{a^2}$	b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{ex}{a^2}$	c) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{x^2}{a^4}$	d) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{ex}{a}$	
18.	18. The curve described parametrically by $x = t^2 + 2t - 1$, $y = 3t + 5$ represents				
	a) An ellipse	b)A hyperbola	c) A parabola	d) A circle	
19. The number of points on the circle $2(x^2 + y^2) = 3x$ which are a distance 2 from the point (-2.1) is					
(a) 2	b)0	c) 1	d)None of these	
20.	20. The number of normal drawn to the parabola $y^2 = 4x$ from the point (1,0) is				

c) 2

d)3

a) 0

b)1