CLASS : XIth
DATE :

Topic :- CONIC SECTION

1. If the circle $x^{2}+y^{2}+4 x+22 y+c=0$ bisects the circumference of the circle $x^{2}+y^{2}$ $-2 x+8 y-d=0$, then $c+d$ is equal to
a) 30
b) 50
c) 40
d) 56
2. If C is the centre of the ellipse $9 x^{2}+16 y^{2}=144$ and S is one focus. The ratio of $C S$ to major axis, is
a) $\sqrt{7}: 16$
b) $\sqrt{7}: 4$
c) $\sqrt{5}: \sqrt{7}$
d) None of these
3. The angle between the normal to the parabola $y^{2}=24 x$ at points $(6,12)$ and $(6,-12)$, is
a) 30°
b) 45°
c) 60°
d) 90°
4. If the circle $C_{1}: x^{2}+y^{2}=16$ intersects another circle C_{2} of radius 5 in such a manner that the common chord is of maximum length and has a slope equal to $3 / 4$, the coordinates of the centre of C_{2} are
a) $(-9 / 5,12 / 5),(9 / 5,-12 / 5)$
b) $(-9 / 5,-12 / 5),(9 / 5,12 / 5)$
c) $(12 / 5,-9 / 5),(-12 / 5,9 / 5)$
d) None of these
5. The normal at the point $\left(b t_{1}^{2}, 2 b t_{1}\right)$ on a parabola $y^{2}=4 b v$ meets the parabola again int he point $\left(b t_{2}^{2}, 2 b t_{2}\right)$, then
a) $t_{2}=-t_{1}-\frac{2}{t_{1}}$
b) $t_{2}=-t_{1}-\frac{2}{t_{1}}$
c) $t_{2}=t_{1}-\frac{2}{t_{1}}$
d) $t_{2}=t_{1}+\frac{2}{t_{1}}$
6. Equation of tangents to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$, which are perpendicular to the line $3 x+4 y=7$, are
a) $4 x-3 y= \pm 6 \sqrt{5}$
b) $4 x-3 y= \pm \sqrt{12}$
c) $4 x-3 y= \pm \sqrt{2}$
d) $4 x-3 y= \pm 1$
7. Any point on the hyperbola $\frac{(x+1)^{2}}{16}-\frac{(y-2)^{2}}{4}=1$ is of the form
a) $(4 \sec \theta, 2 \tan \theta)$
b) $(4 \sec \theta+1,2 \tan \theta-2)$
c) $(4 \sec \theta-1,2 \tan \theta-2)$
d) $(4 \sec \theta-1,2 \tan \theta+2)$
8. The distances from the foci of point $P\left(x_{1}, y_{1}\right)$ on the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$ are
a) $4 \pm \frac{5}{4} y_{1}$
b) $5 \pm \frac{4}{5} x_{1}$
c) $5 \pm \frac{4}{5} y_{1}$
d) None of these
9. The locus of the points of trisection of the double ordinates of the parabola $y^{2}=4 a x$ is
a) $y^{2}=a x$
b) $9 y^{2}=4 a x$
c) $9 y^{2}=a x$
d) $y^{2}=9 a x$
10. The tangent drawn at any point P to the parabola $y^{2}=4 a x$ meets the directrix at the point K, then the angle which $K P$ subtends at its focus is
a) 30°
b) 45°
c) 60°
d) 90°
11. The set of values of ' c ' so that the equation $y=|x|+c$ and $x^{2}+y^{2}-8|x|-9=0$ have no solution, is
a) $(-\infty,-3) \cup(3, \infty)$
b) $(-3,3)$
c) $(-\infty, 5 \sqrt{2}) \cup(5 \sqrt{2}, \infty)$
d) $(5 \sqrt{2}-4, \infty)$
12. The radius of the circle passing through the point $(6,2)$ and two of whose diameters are $x+y=6$ and $x+2 y=4$, is
a) 4
b) 6
c) 20
d) $\sqrt{20}$
13. The coordinates of the point on the circle $x^{2}+y^{2}-12 x-4 y+30=0$, which is farthest from the origin are
a) $(9,3)$
b) $(8,5)$
c) $(12,4)$
d) None of these
14. The points of contact of tangents to the circle $x^{2}+y^{2}=25$ which are inclined at an angle of 30° to the x -axis are
a) $(\pm 5 / 2, \pm 1 / 2)$
b) $(\pm 1 / 2, \pm 5 / 2)$
c) $(\mp 5 / 2, \mp 1 / 2)$
d) None of these
15. How many real tangents can be drawn to the ellipse $5 x^{2}+9 y^{2}=32$ form the point $(2,3)$?
a) 2
b) 1
c) 0
d) 3
16. If the line $2 x+\sqrt{6} y=2$ touches the hyperbola $x^{2}-2 y^{2}=4$, then the point of contact is
a) $(-2, \sqrt{6})$
b) $(-5,2 \sqrt{6})$
c) $\left(\frac{1}{2}, \frac{1}{\sqrt{6}}\right)$
d) $(4,-\sqrt{6})$
17. The locus of the mid-points of focal chords of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, is
a) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{x}{a^{2}}$
b) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{e x}{a^{2}}$
c) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{x^{2}}{a^{4}}$
d) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{e x}{a}$
18. The curve described parametrically by $x=t^{2}+2 t-1, y=3 t+5$ represents
a) An ellipse
b) A hyperbola
c) A parabola
d) A circle
19. The number of points on the circle $2\left(x^{2}+y^{2}\right)=3 x$ which are a distance 2 from the point $(-2,1)$ is
a) 2
b) 0
c) 1
d) None of these
20. The number of normal drawn to the parabola $y^{2}=4 x$ from the point $(1,0)$ is
a) 0
b) 1
c) 2
d) 3

