CLASS : XIth

1
(b)

Given that, $S_{1} \equiv x^{2}+y^{2}+4 x+22 y+c=0$, bisects the circumference of the circle
$S_{2} \equiv x^{2}+y^{2}-2 x+8 y-d=0$
The common chord of the given circle is
$S_{1}-S_{2}=0$
ie, $6 x+14 y+c+d=0$
So, Eq. (i) passes through the centre of the second circle, $i e,(1,-4)$
$\therefore \quad 6+56+c+d=0$
$\Rightarrow c+d=50$
2
(d)

We have, $a^{2}=16, b^{2}=9$
$\therefore e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\frac{\sqrt{7}}{4}$
Coordinates of S are $(\sqrt{7}, 0)$. Therefore, $C S=\sqrt{7}$
$\therefore C S:$ Major axis $=\sqrt{7}: 2 a=\sqrt{7}: 8$
3 (d)
The given points are the ends of the latusrectum where the normals are always at right angle
4
(a)

Let (h, k) be the coordinates of the centre of circle C_{2}. Then its equation is
$(x-h)^{2}+(y-k)^{2}=5^{2}$
The equation of C_{1} is $x^{2}-y^{2}=4^{2}$ and so the equation of the common chord of C_{1} and C_{2} is $2 h x+2 k y=h^{2}+k^{2}-9$
Let p be the length of the perpendicular from the centre $(0,0)$ of C_{1} to (i). Then,
$p=\left|\frac{h^{2}+k^{2}-9}{\sqrt{4 h^{2}+4 k^{2}}}\right|$
The length of the common chord is $2 \sqrt{4^{2}-p^{2}}$ which will be of maximum length, if $p=0 \Rightarrow h^{2}+k^{2}-9=0$
Now, Slope of common chord $=\frac{3}{4}$
$\therefore-\frac{h}{k}=\frac{3}{4} \Rightarrow k=-\frac{4 h}{3}$
Putting the value of k in (ii), we get
$h= \pm \frac{9}{5} \Rightarrow k=\mp \frac{12}{5} \quad$ [From (iii)]
Hence, the centres of circle C_{2} are $(9 / 5,-12 / 5)$ and $(-9 / 5,12 / 5)$
5
(a)

Equation of the normal at point $\left(b t_{1}^{2}, 2 b t_{1}\right)$ on parabola is
$y=-t_{1} x+2 b t_{1}+b t_{1}^{3}$
It is also passes through $\left(b t_{2}^{2}, 2 b t_{2}\right)$, then

$$
\begin{aligned}
& 2 b t_{2}=t_{1} \cdot b t_{2}^{2}+2 b t_{1}+b t_{1}^{3} \\
& \Rightarrow 2 t_{2}-2 t_{1}=t_{1}\left(t_{1}^{2}-t_{1}^{2}\right) \\
& \Rightarrow 2=-t_{1}\left(t_{2}+t_{1}\right) \\
& \Rightarrow t_{2}=-t_{1}-\frac{2}{t_{1}}
\end{aligned}
$$

6

(a)

Let the equation of tangent which is perpendicular to the line $3 x+4 y=7$, is $4 x-3 y=\lambda \Rightarrow y=\frac{4}{3}$ $x-\frac{\lambda}{3}$

Since, it is a tangent to the ellipse
$\therefore\left(\frac{\lambda}{3}\right)^{2}=9 \times\left(\frac{4}{3}\right)^{2}+4 \quad\left[\therefore a^{2}=9, b^{2}=4\right]$
$\Rightarrow \lambda^{2}=180 \Rightarrow \lambda= \pm 6 \sqrt{5}$
\therefore Equation is $4 x-3 y= \pm 6 \sqrt{5}$
7
(d)

Any point on the hyperbola
$\frac{(x+1)^{2}}{16}-\frac{(y-2)^{2}}{4}=1$, is of the form
$(4 \sec \theta-1,2 \tan \theta+2)$

8
 (c)

In the given equation we observe that the denominator of y^{2} is greater than that of x^{2}. So, the two foci lie on y-axis and their coordinates are ($0, \pm b e$), where
$b=5$ and $e=\sqrt{1-\frac{a^{2}}{b^{2}}}=\sqrt{1-\frac{9}{25}}=\frac{4}{5}$
The focal distances of a point $P\left(x_{1}, y_{1}\right)$ on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $b^{2}>a^{2}$ are given by $b \pm e y_{1}$

Hence, required distances $=b \pm e y_{1}=5 \pm \frac{4}{5} y_{1}$
$9 \quad$ (b)
Let $P Q$ be a double ordinate of $y^{2}=4 a x$, and let $R(h, k)$ be a point of trisection. Let the coordinates of P be (x, y). Then,
$x=h$ and $y=3 k$

But, $(x-y)$ lies on $y^{2}=4 a x$
$\therefore 9 k^{2}=4 a h$
Hence, the locus of (h, k) is $9 y^{2}=4 a x$
10 (d)
Let $P\left(a t^{2}, 2 a t\right)$ any point on the parabola and focus is $(a, 0)$

The equation of tangent at P is $y t=x+a t^{2}$
Since, it meets the directrix $x=-a$ at K
Then, the coordinate of K is $\left(-a, \frac{a t^{2}-a}{t}\right)$
Slope of $S P=m_{1}=\frac{2 a t}{a\left(t^{2}-1\right)}$
Slope of $S K=m_{2}=\frac{a\left(t^{2}-1\right)}{-2 a t}$
$\therefore m_{1} m_{2}=\frac{2 a t}{a\left(t^{2}-1\right)} \cdot \frac{a\left(t^{2}-1\right)}{(-2 a t)}=-1$
$\therefore \angle P S K=90^{\circ}$
11 (d)
Since, $y=|x|+c$ and $x^{2}+y^{2}-8|x|-9=0$ both are symmetrical about y-axis for $x>0, y=x+c$.
Equation of tangent to circle $x^{2}+y^{2}-8 x-9=0$ which is parallel to $y=x+c$ is $y=(x-4)+5$ $\sqrt{1+1}$
$\Rightarrow y=x+(5 \sqrt{2}-4)$

For no solution $c>5 \sqrt{2}-4$,
$\therefore c \in(5 \sqrt{2}-4, \infty)$
12
(d)

Centre is the point of intersection of two diameter, $i e$, the point of intersection of two diameters is $C(8,-2)$, therefore the distance from the centre to the point $P(6,2)$ is
$r=C P=\sqrt{4+16}=\sqrt{20}$
13
(a)

Only the point $(9,3)$ lies on the given circle
14
(d)

The equation of a tangent of slope m to the circle $x^{2}+y^{2}=a^{2}$ is $y=m x \pm a \sqrt{1+m^{2}}$ and the coordinates of point of contact are
$\left(\mp \frac{a m}{\sqrt{1+m^{2}}}, \pm \frac{a}{\sqrt{1+m^{2}}}\right)$
Here, $a=5$ and $m=\tan 30=1 / \sqrt{3}$
So, the coordinates of the points of contact are $\left(\mp \frac{5}{2}, \pm \frac{5 \sqrt{3}}{2}\right)$

15 (a)

Given, $\frac{x^{2}}{32 / 5}+\frac{y^{2}}{32 / 9}=1$
Let the equation of tangent be $y=m x+c$
$y=m x \pm \sqrt{\frac{32}{5} m^{2}+\frac{32}{9}}$
$\left[\therefore c^{2}=a^{2} m^{2}+b^{2}\right.$ for $\left.a>b\right]$
Since, $(2,3)$ lies on Eq.(i)
$\Rightarrow 3=m .2 \pm \sqrt{\frac{32}{5} m^{2}+\frac{32}{9}}$
$45(3-2 m)^{2}=288 m^{2}+160$
$\Rightarrow 108 m^{2}+540 m-245=0$
$\therefore D=(540)^{2}+4.180 .245>0 \Rightarrow D>0$
\Rightarrow Two values of m will exist
\Rightarrow Two tangents will exist

Alternate

Let $S \equiv 5 x^{2}+9 y^{2}-32$
Now, $S(2,3) \equiv 20+81-32>0$
\therefore Point $(2,3)$ lies outside ellipse
Thus, two tangents can be drawn
16
(d)

As we know equation of tangent to the given hyperbola at $\left(x_{1,} y_{1}\right)$ is $x x_{1}-2 y y_{1}=4$ which is same as $2 x+\sqrt{6} y=2$
$\Rightarrow x_{1}=4$ and $y_{1}=\sqrt{6}$
Thus, the point of contact is $(4,-\sqrt{6})$
17 (b)
Let (h, k) be the mid-point of a focal chord of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Then, its equation is $\frac{h x}{a^{2}}+\frac{k y}{b^{2}}=\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}$
It passes through the focus $S(a e, 0)$
$\therefore \frac{h e}{a}=\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}$
Hence, the locus of (h, k) is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{x e}{a}$
18
(c)

Given, $x=t^{2}+2 t-1$
and $y=3 t+5 \Rightarrow t=\frac{y-5}{3}$
On putting the value of t in Eq. (i), we get
$x=\left(\frac{y-5}{3}\right)^{2}+2\left(\frac{y-5}{3}\right)-1$
$\Rightarrow x=\frac{1}{9}\left\{y^{2}-4 y-14\right\}$
$\Rightarrow(y-2)^{2}=9(x+2)$
This is an equation of a parabola

19
(b)

We observe that the minimum distance between point P and the given circle is

$P A=C P-C A=\frac{\sqrt{137}}{4}-\frac{3}{4}=\frac{\sqrt{137}-3}{4}>2$
So, there is no point on the circle whose distance from P is 2 units
20
(b)

Given curve is $y^{2}=4 x$

Also, point $(1,0)$ is the focus of the parabola. It is clear from the graph that only normal is possible

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | B | D | D | A | A | A | D | C | B | D |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | D | D | A | D | A | D | B | C | B | B |
| | | | | | | | | | | |

