CLASS : XIth
DATE :

Topic :- CONIC SECTION

1. The circle $x^{2}+y^{2}+4 x-7 y+12=0$ cuts an intercept on y-axis of length
a) 3
b) 4
c) 7
d) 1
2. If the eccentricities of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ and the hyperbola $\frac{x^{2}}{64}-\frac{y^{2}}{b^{2}}=1$ are reciprocals of each other, then b^{2} is equal to
a) 192
b) 64
c) 16
d) 32
3. The ellipse $x^{2}+4 y^{2}=4$ is inscribed in a rectangle aligned with the coordinate axes, which is turn in inscribed in another ellipse that passes through the point $(4,0)$. Then, the equation of the ellipse is
a) $x^{2}+12 y^{2}=16$
b) $4 x^{2}+48 y^{2}=48$
c) $4 x^{2}+64 y^{2}=48$
d) $x^{2}+16 y^{2}=16$
4. The Cartesian equation of the directrix of the parabola whose parametric equations are $x=2 t+1, y=t^{2}+2$, is
a) $y=2$
b) $y=1$
c) $y=-1$
d) $y=-2$
5. The line $x-1=0$ is the directrix of the parabola $y^{2}-k x+8=0$. Then one of the value of k is
a) $\frac{1}{8}$
b) 8
c) 4
d) $\frac{1}{4}$
6. The equation of the axes of the ellipse $3 x^{2}+4 y^{2}+6 x-8 y-5=0$, are
a) $x+3, y=5$
b) $x+3=0, y-5=0$
c) $x-1=0, y=0$
d) $x+1=0, y-1=0$
7. Locus of the mid points of the chord of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, so that chord is always touching the circle $x^{2}+y^{2}=c^{2},(c<a, c<b)$ is
a) $\left(b^{2} x^{2}+a^{2} y^{2}\right)^{2}=c^{2}\left(b^{4} x^{2}+a^{4} y^{2}\right)$
b) $\left(a^{2} x^{2}+b^{2} y^{2}\right)^{2}=c^{2}\left(a^{4} x^{2}+b^{4} y^{2}\right)$
c) $\left(b^{2} x^{2}+a^{2} y^{2}\right)^{2}=c^{2}\left(b^{2} x^{4}+a^{2} y^{4}\right)$
d) None of the above
8. The length intercepted by the curve $y^{2}=4 x$ on the line satisfying $d y / d x=1$ and passing through point $(0,1)$, is given by
a) 1
b) 2
c) 0
d) None of these
9. Two vertices of an equilateral triangle are $(-1,0)$ and $(1,0)$ and its third vertex lies above the x-axis. The equation of its circumcircle, is
a) $x^{2}+y^{2}-\frac{1}{\sqrt{3}} y-1=0$
b) $x^{2}+y^{2}+\frac{2}{\sqrt{3}} y-1=0$
c) $x^{2}+y^{2}-\frac{2}{\sqrt{3}} y-1=0$
d) None of these
10. The tangents to $x^{2}+y^{2}=a^{2}$ having inclinations α and β intersect at P. If $\cot \alpha+\cot \beta=0$, then the locus of P is
a) $x+y=0$
b) $x-y=0$
c) $x y=0$
d) None of these
11. The parametric representation $\left(2+t^{2}, 2 t+1\right)$ represents
a) A parabola with focus at $(2,1)$
b) A parabola with vertex at $(2,1)$
c) An ellipse with centre at $(2,1)$
d) None of these
12. Product of the perpendicular from the foci upon any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a<b)$ is equal to
a) $2 a$
b) a^{2}
c) b^{2}
d) $a b^{2}$
13. The equations of the sides $A B, B C, C A$ of a $\triangle A B C$ are $x+y=1,4 x-y+4=0$ and $2 x+3 y=6$. Circles are drawn on $A B, B C, C A$ as diameter. The point of concurrence of the common chord is
a) Centroid of the triangle
b) Orthocenter
c) Circumcentre
d) Incentre
14. The sum of the distances of a point $(2,-3)$ from the foci of an ellipse $16(x-2)^{2}+25(y+3)^{2}$ $=400$ is
a) 8
b) 6
c) 50
d) 32
15. If the equation of a given circle is $x^{2}+y^{2}=36$, then the length of the chord which lies along the line $3 x+4 y-15=0$ is
a) $3 \sqrt{6}$
b) $2 \sqrt{3}$
c) $6 \sqrt{3}$
d) None of these
16. The normal chord of a parabola $y^{2}=4 a x$ at $\left(x_{1}, x_{1}\right)$ subtends a right angle at the
a) Focus
b) Vertex
c) End of the latusrectum
d) None of these
17. The equation of the circle which has a tangent $2 x-y-1=0$ at $(3,5)$ on it and with the centre on $x+y=5$, is
a) $x^{2}+y^{2}+6 x-16 y+28=0$
b) $x^{2}+y^{2}-6 x+16 y-28=0$
c) $x^{2}+y^{2}+6 x+6 y-28=0$
d) $x^{2}+y^{2}-6 x-6 y-28=0$
18. The equation of the tangent to the parabola $y^{2}=9 x$ which goes through the point $(4,10)$, is
a) $x+4 y+1=0$
b) $9 x+4 y+4=0$
c) $x+4 y+36=0$
d) $9 x-4 y+4=0$
19. The length of the chord of the circle $x^{2}+y^{2}+4 x-7 y+2=0$ along the y-axis, is
a) 1
b) 2
c) $1 / 2$
d) None of these
20. What is the slope of the tangent drawn to the hyperbola $x y=a,(a \neq 0)$ at the point $(a, 1)$?
a) $\frac{1}{a}$
b) $-\frac{1}{a}$
c) a
d) $-a$
