

CLASS: XIth **DATE:**

Solutions

SUBJECT: MATHS DPP NO.: 1

1. The circle $x^2 + y^2 + 4x - 7y + 12 = 0$ cuts an intercept on *y*-axis of length

a) 3

If the eccentricities of the ellipse $\frac{x^2}{4} + \frac{y^2}{3} = 1$ and the hyperbola $\frac{x^2}{64} - \frac{y^2}{b^2} = 1$ are reciprocals of each other, then b^2 is equal to

a) 192

c) 16

d)32

3. The ellipse $x^2 + 4y^2 = 4$ is inscribed in a rectangle aligned with the coordinate axes, which is turn in inscribed in another ellipse that passes through the point (4, 0). Then, the equation of the ellipse is

- a) $x^2 + 12y^2 = 16$ b) $4x^2 + 48y^2 = 48$ c) $4x^2 + 64y^2 = 48$ d) $x^2 + 16y^2 = 16$

4. The Cartesian equation of the directrix of the parabola whose parametric equations are $x = 2t + 1, y = t^2 + 2$, is

- a) y = 2
- b) v = 1
- c) y = -1
- d) v = -2

5. The line x - 1 = 0 is the directrix of the parabola $y^2 - kx + 8 = 0$. Then one of the value of k is

a) $\frac{1}{8}$

b)8

c) 4

 $d)^{\frac{1}{4}}$

6. The equation of the axes of the ellipse $3x^2 + 4y^2 + 6x - 8y - 5 = 0$, are

- a) x + 3, y = 5

- b) x + 3 = 0, y 5 = 0 c) x 1 = 0, y = 0 d) x + 1 = 0, y 1 = 0

7. Locus of the mid points of the chord of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, so that chord is always touching the circle $x^2 + y^2 = c^2$, (c < a, c < b) is

- a) $(b^2x^2 + a^2y^2)^2 = c^2(b^4x^2 + a^4y^2)$ b) $(a^2x^2 + b^2y^2)^2 = c^2(a^4x^2 + b^4y^2)$
- c) $(b^2x^2 + a^2y^2)^2 = c^2(b^2x^4 + a^2y^4)$
- d) None of the above

8. The length intercepted by the curve $y^2 = 4x$ on the line satisfying dy/dx = 1 and passing through point (0, 1), is given by

a) 1

b) 2

c) 0

d) None of these

- 9. Two vertices of an equilateral triangle are (-1,0) and (1,0) and its third vertex lies above the x-axis. The equation of its circumcircle, is a) $x^2 + y^2 - \frac{1}{\sqrt{3}}y - 1 = 0$
 - b) $x^2 + y^2 + \frac{2}{\sqrt{3}}y 1 = 0$
 - c) $x^2 + y^2 \frac{2}{\sqrt{3}}y 1 = 0$
 - d) None of these
- 10. The tangents to $x^2 + y^2 = a^2$ having inclinations α and β intersect at P. If $\cot \alpha + \cot \beta = 0$, then the locus of P is
 - a) x + y = 0
- b) x y = 0
- c) xy = 0
- d) None of these
- 11. The parametric representation $(2 + t^2, 2t + 1)$ represents
 - a) A parabola with focus at (2,1)
 - b) A parabola with vertex at (2,1)
 - c) An ellipse with centre at (2,1)
 - d) None of these
- 12. Product of the perpendicular from the foci upon any tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a < b)$ is equal to
 - a) 2a

b) a^2

- c) b^2
- d) ab^2
- 13. The equations of the sides AB, BC, CA of a $\triangle ABC$ are x + y = 1, 4x y + 4 = 0 and 2x + 3y = 6. Circles are drawn on AB, BC, CA as diameter. The point of concurrence of the common chord is
 - a) Centroid of the triangle

b) Orthocenter

c) Circumcentre

- d) Incentre
- 14. The sum of the distances of a point (2, -3) from the foci of an ellipse $16(x-2)^2 + 25(y+3)^2$ = 400 is
 - a)8

b)6

c) 50

- d)32
- 15. If the equation of a given circle is $x^2 + y^2 = 36$, then the length of the chord which lies along the line 3x + 4y - 15 = 0 is
 - a) $3\sqrt{6}$
- b) $2\sqrt{3}$
- c) $6\sqrt{3}$
- d) None of these
- 16. The normal chord of a parabola $y^2 = 4ax$ at (x_1, x_1) subtends a right angle at the
 - a) Focus
 - b) Vertex
 - c) End of the latusrectum
 - d) None of these
- 17. The equation of the circle which has a tangent 2x y 1 = 0 at (3,5) on it and with the centre on x + y = 5, is

a)
$$x^2 + y^2 + 6x - 16y + 28 = 0$$

b)
$$x^2 + y^2 - 6x + 16y - 28 = 0$$

c)
$$x^2 + y^2 + 6x + 6y - 28 = 0$$

d)
$$x^2 + y^2 - 6x - 6y - 28 = 0$$

18. The equation of the tangent to the parabola $y^2 = 9x$ which goes through the point (4, 10), is

a)
$$x + 4y + 1 = 0$$

b)
$$9x + 4y + 4 = 0$$
 c) $x + 4y + 36 = 0$

c)
$$x + 4y + 36 = 0$$

d)
$$9x - 4y + 4 = 0$$

- 19. The length of the chord of the circle $x^2 + y^2 + 4x 7y + 2 = 0$ along the *y*-axis, is
 - a) 1

b)2

- c) 1/2
- d) None of these
- 20. What is the slope of the tangent drawn to the hyperbola xy = a, $(a \ne 0)$ at the point (a, 1)?
 - a) $\frac{1}{a}$

- b) $-\frac{1}{a}$
- c) a

d) -a

