CLASS : XIth
DATE :

Topic :- COMPLEX NUMBERS AND QUADRATIC EQUATIONS

1. If α_{1}, α_{2} and β_{1}, β_{2} are the roots of the equation $a x^{2}+b x+c=0$ and $p x^{2}+q x+r=0$ respectively and system of equations $\alpha_{1} y+\alpha_{2} z=0$ and $\beta_{1} y+\beta_{2} z=0$ has a non-zero solution, then
a) $a^{2} q c=p^{2} b r$
b) $b^{2}=p r=q^{2} a c$
c) $c^{2}=a r=r^{2} p b$
d) None of these
2. If $1, \omega, \omega^{2}$ are the cube roots of unity, then $\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega^{4}\right)\left(1-\omega^{4}+\omega^{8}\right)\left(1-\omega^{8}+\right.$ ω^{16})... upto $2 n$ factors is
a) $2 n$
b) $2^{2 n}$
c) 1
d) $-2^{2 n}$
3. If α and β are different complex numbers with $|\beta|=1$, then $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$ is
a) 0
b) $3 / 2$
c) $1 / 2$
d) 1
4. In a right-angled triangle, the sides are a, b and c, with c as hypotenuse, and $c-b \neq 1, c+b \neq 1$. Then the value of $\left(\log _{c+b} a+\log _{c-b} a\right) /\left(2 \log _{c+b} a \times \log _{c-b} a\right)$ will be
a) 2
b) -1
c) $\frac{1}{2}$
d) 1
5. The set of real values of x for which $\frac{10 x^{2}+17 x-34}{x^{2}+2 x-3}<8$, is
a) $(-5 / 2,2)$
b) $(-3,-5 / 2) \cup(1,2)$
c)
$(-3,1) d) \quad$ None
of these
6. If $\left(\frac{1+\cos \phi+i \sin \phi}{1+\cos \phi-i \sin \phi}\right)=u+i v$, where u and v all real numbers, then u is
a) $n \cos \phi$
b) $\cos n \phi$
c) $\cos \left(\frac{n \phi}{2}\right)$
d) $\sin \left(\frac{n \phi}{2}\right)$
7. The number of real roots of the equation $2 x^{4}+5 x^{2}+3=0$, is
a) 4
b) 1
c) 0
d) 3
8. If α and β are the roots of $x^{2}-2 x+4=0$, then the value of $\alpha^{6}+\beta^{6}$ is
a) 32
b) 64
c) 128
d) 256
9. If $|z+4| \leq 3$, then the greatest and the least value of $|z+1|$ are
a) $6,-6$
b) 6,0
c) 7,2
d) $0,-1$
10. If P, P^{\prime} represent the complex number z_{1} and its additive inverse respectively, then the equation of the circle with $P P^{\prime}$ as a diameter is
a) $\frac{z}{z_{1}}=\frac{\bar{z}_{1}}{z}$
b) $z \bar{Z}=z_{1} \bar{Z}_{1}=0$
c) $z \bar{z}_{1}+\bar{z} z_{1}=0$
d) None of these
11. If $x+1$ is a factor of $x^{4}+(p-3) x^{3}-(3 p-5) x^{2}+(2 p-9) x+6$, then the value of p is
a) -4
b) 0
c) 4
d) 2
12. If $A=\{x: f(x)=0\}$ and $B=\{x: g(x)=0\}$, then $A \cap B$ will be the set of roots of the equation
a) $\{f(x)\}^{2}+\{g(x)\}^{2}=0$
b) $\frac{f(x)}{g(x)}$
c) $\frac{g(x)}{f(x)}$
d) None of these
13. If α and β are the roots of the equation $x^{2}+p x+q=0$ and if the sum $(\alpha+\beta) x-\frac{\alpha^{2}+\beta^{2}}{2} \cdot x^{2}+\frac{\alpha^{3}+\beta^{3}}{3} \cdot x^{3}-\ldots$ exists then it is equal to
a) $\log \left(x^{2}+p x+q\right)$
b) $\log \left(x^{2}-p x+q\right)$
c) $\log \left(1+p x+q x^{2}\right)$
d) $\log \left(1-p x+q x^{2}\right)$
14. Let z be a complex number satisfying $|z-5 i| \leq 1$ such that amp (z) is minimum. Then z is equal to
a) $\frac{2 \sqrt{6}}{5}+\frac{24 i}{5}$
b) $\frac{24}{5}+\frac{2 \sqrt{6} i}{5}$
c) $\frac{2 \sqrt{6}}{5}-\frac{24 i}{5}$
d) None of these
15. If α and β are the roots of $x^{2}+p x+1=0$ and γ and δ are the roots of $x^{2}+q x+1=0$, then the value of $(\alpha-\gamma)(\beta-\gamma)(\alpha+\delta)(\beta+\delta)$, is
a) $p^{2}-q^{2}$
b) $q^{2}-p^{2}$
c) p^{2}
d) q^{2}
16. For two complex numbers z_{1}, z_{2} the relation $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ holds, if
a) $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)$
b) $\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=\frac{\pi}{2}$
c) $z_{1} z_{2}=1$
d) $\left|z_{1}\right|=\left|z_{2}\right|$
17. If ω is a complex cube root of unity, then $\sin \left\{\left(\omega^{10}+\omega^{23} \pi-\frac{\pi}{4}\right)\right\}$ is equal to
a) $\frac{1}{\sqrt{2}}$
b) $\frac{1}{2}$
c) 1
d) $\frac{\sqrt{3}}{2}$
18. If the equation $x^{3}-3 x+a=0$ has distinct roots between 0 and 1 , then the value of a is
a) 2
b) $1 / 2$
c) 3
d) None of these
19. If α, β are roots of the equation $375 x^{2}-25 x-2=0$ and $S_{n}=a^{n}+\beta^{n}$, then $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} S_{r}$ is equal to
a) $7 / 116$
b) $1 / 12$
c) $29 / 348$
d) None of these
20. If $y=\tan x \cot 3 x, x \in R$, then
a) $\frac{1}{3}<y<1$
b) $\frac{1}{3} \leq y \leq 1$
c) $\frac{1}{3} \leq y \leq 3$
d) None of these

