

CLASS : XIth DATE :

Solutions

SUBJECT : MATHS DPP NO. : 9

Topic :- complex numbers and quadratic equations

1. If α_1, α_2 and β_1, β_2 are the roots of the equation $ax^2 + bx + c = 0$ and $px^2 + qx + r = 0$ respectively and system of equations $\alpha_1 y + \alpha_2 z = 0$ and $\beta_1 y + \beta_2 z = 0$ has a non-zero solution, then b) $b^2 = pr = q^2 ac$ c) $c^2 = ar = r^2 pb$ a) $a^2ac = p^2br$ d) None of these 2. If 1, ω , ω^2 are the cube roots of unity, then $(1 - \omega + \omega^2)(1 - \omega^2 + \omega^4)(1 - \omega^4 + \omega^8)(1 - \omega^8 + \omega^8)(1 - \omega^8)(1 - \omega^8 + \omega^8)(1$ ω^{16})... upto 2*n* factors is d) -2^{2n} b) 2^{2n} a) 2n c) 1 3. If α and β are different complex numbers with $|\beta| = 1$, then $\left|\frac{\beta - \alpha}{1 - \alpha\beta}\right|$ is a) 0 b)3/2c) 1/2 d)1 4. In a right-angled triangle, the sides are a, b and c, with c as hypotenuse, and $c - b \neq 1, c + b \neq 1$. Then the value of $(\log_{c+b} a + \log_{c-b} a)/(2\log_{c+b} a \times \log_{c-b} a)$ will be c) $\frac{1}{2}$ b) -1 a) 2 d)1 The set of real values of x for which $\frac{10x^2 + 17x - 34}{x^2 + 2x - 3} < 8$, is 5. a) (-5/2, 2)b) $(-3, -5/2) \cup (1, 2)$ c) (-3, 1)dNone of these 6. If $\left(\frac{1 + \cos \phi + i \sin \phi}{1 + \cos \phi - i \sin \phi}\right) = u + iv$, where *u* and *v* all real numbers, then *u* is d) $\sin\left(\frac{n\varphi}{2}\right)$ c) $\cos\left(\frac{n\phi}{2}\right)$ a) $n\cos\phi$ b) $\cos n\phi$ 7. The number of real roots of the equation $2x^4 + 5x^2 + 3 = 0$, is b)1 a)4 c) 0 d)3 8. If α and β are the roots of $x^2 - 2x + 4 = 0$, then the value of $\alpha^6 + \beta^6$ is a) 32 b)64 c) 128 d)256

9. If $|z + 4| \le 3$, then the greatest and the least value of |z + 1| are a) 6, -6 b) 6, 0 c) 7, 2 d) 0, -1 10. If P,P' represent the complex number z_1 and its additive inverse respectively, then the equation of the circle with PP' as a diameter is

a)
$$\frac{z}{z_1} = \frac{\overline{z}_1}{z}$$
 b) $z\overline{z} = z_1\overline{z}_1 = 0$ c) $z\overline{z}_1 + \overline{z}z_1 = 0$ d) None of these

- 11. If x + 1 is a factor of $x^4 + (p-3)x^3 (3p-5)x^2 + (2p-9)x + 6$, then the value of p is a) -4 b) 0 c) 4 d) 2
- 12. If $A = \{x: f(x) = 0\}$ and $B = \{x: g(x) = 0\}$, then $A \cap B$ will be the set of roots of the equation a) $\{f(x)\}^2 + \{g(x)\}^2 = 0$ b) $\frac{f(x)}{g(x)}$ c) $\frac{g(x)}{f(x)}$ d) None of these

13. If
$$\alpha$$
 and β are the roots of the equation $x^2 + px + q = 0$ and if the sum
 $(\alpha + \beta)x - \frac{\alpha^2 + \beta^2}{2}x^2 + \frac{\alpha^3 + \beta^3}{3}x^3 - \dots$ exists then it is equal to
a) $\log(x^2 + px + q)$ b) $\log(x^2 - px + q)$ c) $\log(1 + px + qx^2)$ d) $\log(1 - px + qx^2)$

14. Let *z* be a complex number satisfying $|z - 5i| \le 1$ such that amp (*z*) is minimum. Then *z* is equal to

a)
$$\frac{2\sqrt{6}}{5} + \frac{24i}{5}$$
 b) $\frac{24}{5} + \frac{2\sqrt{6}i}{5}$ c) $\frac{2\sqrt{6}}{5} - \frac{24i}{5}$ d) None of these

15. If α and β are the roots of $x^2 + px + 1 = 0$ and γ and δ are the roots of $x^2 + qx + 1 = 0$, then the value of $(\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta + \delta)$, is

a)
$$p^2 - q^2$$
 b) $q^2 - p^2$ c) p^2 d) q^2

 16. For two complex numbers z_1, z_2 the relation $|z_1 + z_2| = |z_1| + |z_2|$ holds, if

 a) $\arg(z_1) = \arg(z_2)$ b) $\arg(z_1) + \arg(z_2) = \frac{\pi}{2}$

 c) $z_1 z_2 = 1$ d) $|z_1| = |z_2|$

17. If ω is a complex cube root of unity, then $\sin\left\{(\omega^{10} + \omega^{23}\pi - \frac{\pi}{4})\right\}$ is equal to a) $\frac{1}{\sqrt{2}}$ b) $\frac{1}{2}$ c) 1 d) $\frac{\sqrt{3}}{2}$

18. If the equation $x^3 - 3x + a = 0$ has distinct roots between 0 and 1, then the value of *a* is a) 2 b) 1/2 c) 3 d) None of these

19. If α, β are roots of the equation $375x^2 - 25x - 2 = 0$ and $S_n = a^n + \beta^n$, then $\lim_{n \to \infty} \sum_{r=1}^n S_r$ is equal

20. If
$$y = \tan x \cot 3x, x \in R$$
, then
a) $\frac{1}{3} < y < 1$ b) $\frac{1}{3} \le y \le 1$ c) $\frac{1}{3} \le y \le 3$ d) None of these

