

CLASS: XIth **DATE:**

Solutions

SUBJECT: MATHS DPP NO.:8

1.	If $(\sqrt{5} + \sqrt{3}i)^{33}$	$= 2^{49} z$, then modulus	of the complex number	z is equal to
		_	-	

a) 1

b) $\sqrt{2}$

c) $2\sqrt{2}$

d)4

2. If centre of a regular hexagon is at origin and one of the vertex on argand diagram is 1 + 2i, then its perimeter is

a) $2\sqrt{5}$

b) $6\sqrt{2}$

c) $4\sqrt{5}$

d) $6\sqrt{5}$

3. The value of $\sum_{k=1}^{6} \left(\sin \frac{2\pi k}{7} - i \cos \frac{2\pi k}{7} \right)$ is

a) -1

b)0

c) -i

d)i

4. The cubic equation whose roots are thrice to each of the roots of $x^3 + 2x^2 - 4x + 1 = 0$ is

a) $x^3 - 6x^2 + 36x + 27 = 0$

b) $x^3 + 6x^2 + 36x + 27 = 0$

c) $x^3 - 6x^2 - 36x + 27 = 0$

d) $x^3 + 6x^2 - 36x + 27 = 0$

5. Let $(\sin a)x^2 + (\sin a)x + (1 - \cos a)$. The value of a for which roots of this equation are real and distinct, is

a) $(0.2 \tan^{-1} 1/4)$

b) $(0, 2\pi/3)$

c) $(0, \pi)$

d) $(0, 2\pi)$

6. If α and β ($\alpha < \beta$) are the roots of the equation $x^2 + bx + c = 0$ where c < 0 < b, then

a) $0 < \alpha < \beta$

b) $\alpha < 0 < \beta < |\alpha|$ c) $\alpha < \beta < 0$

d) α < 0 < $|\alpha|$ < β

7. If $1 + x^2 = \sqrt{3}x$, then $\sum_{n=1}^{24} \left(x^n - \frac{1}{x^n} \right)^2$ is equal to

a) 0

c) -24

d)-48

8. The roots of the equation $|x^2 - x - 6| = x + 2$ are

a) -2.1.4

b) 0.2.4

c) 0,1,4

d) -2.2.4

9. Let α,β be the roots of the equation $ax^2 + bx + c = 0$, and let $\alpha^n + \beta^n = S_n$ for $n \ge 1$. Then, the value of the determinant

$$\begin{vmatrix} 3 & 1 + S_1 & 1 + S_2 \\ 1 + S_1 & 1 + S_2 & 1 + S_3 \\ 1 + S_2 & 1 + S_3 & 1 + S_4 \end{vmatrix}$$
 is

a)
$$\frac{b^2-4ac}{a^4}$$

b)
$$\frac{(a+b+c)(b^2+4ac)}{a^4}$$

c)
$$\frac{(a+b+c)(b^2-4ac)}{a^4}$$

d)
$$\frac{(a+b+c)^2(b^2-4ac)}{a^4}$$

10. If $z_1, z_2, z_3, ..., z_n$ are n nth roots of unity, then for k = 1, 2, ..., n

a)
$$|z_k| = k|z_{n+1}|$$
 b) $|z_{k+1}| = k|z_k|$

b)
$$|z_{k+1}| = k|z_k|$$

c)
$$|z_{k+1}| = |z_k| + |z_{k+1}|$$
 d) $|z_k| = |z_{k+1}|$

11. If α, β are the roots of the equation $x^2 - (1 + n^2)x + \frac{1}{2}(1 + n^2 + n^4) = 0$, then $\alpha^2 + \beta^2$ is a) n^2 b) $-n^2$ c) n^4 d) $-n^4$

a)
$$n^2$$

b)
$$-n^2$$

c)
$$n^4$$

d)
$$-n^4$$

12. If one root of equation $x^2 + ax + 12 = 0$ is 4 while the equation $x^2 + ax + b = 0$ has equal roots, then the value of b is

a)
$$\frac{4}{49}$$

b)
$$\frac{49}{4}$$

c)
$$\frac{7}{4}$$

d)
$$\frac{4}{7}$$

13. If $a = \log_2 3$, $b = \log_2 5$, $c = \log_7 2$, then $\log_{140} 63$ in terms of a, b, c is

a)
$$\frac{2ac+1}{2c+abc+1}$$

b)
$$\frac{2ac+1}{2a+c+a}$$

c)
$$\frac{2ac+1}{2c+ab+a}$$

d) None of these

14. Number of non-zero integral solutions of the equation $(1-i)^n = 2^n$ is

d) None of these

The number of non-zero solutions of the equation

$$x^2 - 5x - (Sgn(x))6 = 0$$
, is

d)4

16. If *n* is a positive integer greater than unity and z is a complex number satisfying the equation z^n $=(z+1)^n$, then

a) Re
$$(z) < 0$$

b) Re
$$(z) > 0$$

c) Re
$$(z) = 0$$

d) None of these

17. If 1, ω , ω^2 are the cube roots of unity, then $(1+\omega)(1+\omega^2)(1+\omega^4)(1+\omega^8)$ is equal to

c)
$$\omega^2$$

 $d)\omega$

18. If $\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$, then

a)
$$x = 3$$
, $y = 1$

b)
$$x = 13, y =$$

a)
$$x = 3$$
, $y = 1$ b) $x = 13$, $y = 3$ c) $x = 0$, $y = 3$

d)
$$x = 0, y = 0$$

19. If z_1, z_2, z_3 are vertices of an equilateral triangle with z_0 its centroid, then $z_1^2 + z_2^2 + z_3^2 =$

a)
$$z_0^2$$

b) 9
$$z_0^2$$

c)
$$3 z_0^2$$

d)
$$2 z_0^2$$

20. For all x', $x^2 + 2ax + (10 - 3a) > 0$, then the interval in which a' lies, is

a)
$$a < -5$$

b)
$$-5 < a < 2$$

c)
$$a > 5$$

d)
$$2 < a < 5$$

