

CLASS : XIth DATE :

Solutions

SUBJECT : MATHS DPP NO. : 7

**Topic :-** complex numbers and quadratic equations

- 1. The values of *x* satisfying  $|x^2 + 4x + 3| + (2x + 5) = 0$  are a) -4,  $-1 - \sqrt{3}$  b) 4,  $1 + \sqrt{3}$  c) -4,  $1 - \sqrt{3}$  d) -4,  $1 + \sqrt{3}$
- 2. If  $x = \sqrt{\frac{2 + \sqrt{3}}{2 \sqrt{3}}}$ , then  $x^2(x 4)^2$  is equal to a) 7 b) 4 c) 2

3. If  $|a_k| < 1$ ,  $\lambda_k \ge 0$  for k = 1, 2, ..., n and  $\lambda_1 + \lambda_2 + ..., \lambda_n = 1$ , then the value of  $|\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n|$  is

a) Equal to one

b) Greater than one

c) Zero

d) Less than one

d)1

- 4. If  $\tan \alpha$  and  $\tan \beta$  are roots of the equation  $x^2 + px + q = 0$  with  $p \neq 0$ , then a)  $\sin^2(\alpha + \beta) + p \sin(\alpha + \beta) \cos(\alpha + \beta) + q \cos^2(\alpha + \beta) = q$ b)  $\tan(\alpha + \beta) = \frac{p}{q+1}$ c)  $\cos(\alpha + \beta) = -p$ d)  $\sin(\alpha + \beta) = 1 - q$
- 5. The amplitude of  $\sin \frac{\pi}{5} + i\left(1 \cos \frac{\pi}{5}\right)$  is a)  $\frac{2\pi}{5}$  b)  $\frac{\pi}{15}$  c)  $\frac{\pi}{10}$  d)  $\frac{\pi}{5}$
- 6. The value of sum  $\sum_{n=1}^{13} (i^n + i^{n+1})$ , where  $i = \sqrt{-1}$ , equals a) -i b) i - 1 c) -i d) 0
- 7. If x > 0 and  $\log_3 x + \log_3(\sqrt{3}) + \log_3(\sqrt[4]{x}) + \log_3(\sqrt[8]{x}) + \log_3(\sqrt[16]{x}) + \dots = 4$ , then x equals a) 9 b) 81 c) 1 d) 27

8. Is *S* is the set of all real *x* such that  $\frac{2x}{2x^2 + 5x + 2} > \frac{1}{x + 1}$ , then *S* is equal to a) (-2, -1)b) (-2/3, 0)c) (-2/3, -1/2)d)  $(-2, -1) \cup (-2/3, -1/2)$  9. The value of *p* for which the difference between the roots of the equation  $x^2 + px + 8 = 0$  is 2 are

- a)  $\pm 2$  b)  $\pm 4$  c)  $\pm 6$  d)  $\pm 8$
- 10. If  $x^2 + ax + 10 = 0$  and  $x^2 + bx 10 = 0$  have a common root, then  $a^2 b^2$  is equal to a) 10 b) 20 c) 30 d) 40

11. If  $|z_1| = |z_2| = |z_3| = 1$  and  $z_1, z_2, z_3$  represent the vertices of an equilateral triangle, then a)  $z_1 + z_2 + z_3 = 0$  and  $z_1 z_2 z_3 = 1$ b)  $z_1 + z_2 + z_3 = 1$  and  $z_1 z_2 z_3 = 1$ c)  $z_1 z_2 + z_2 z_3 + z_3 z_1 = 0$  and  $z_1 + z_2 + z_3 = 0$ d)  $z_1 z_2 + z_2 z_3 + z_3 z_1 = 0$  and  $z_1 z_2 z_3 = 1$ 

12. If 
$$\sqrt{x + iy} = \pm (a + ib)$$
, then  $\sqrt{-x - iy}$  is equal to  
a)  $\pm (b + ia)$  b)  $\pm (a - ib)$  c)  $\pm (b - ia)$  d) None of these

13. If the roots of the equation  $x^2 + px + q = 0$  are  $\alpha$  and  $\beta$  and roots of the equation  $x^2 - xr + s = 0$  are  $\alpha^4$ ,  $\beta^4$ , then the roots of the equation  $x^2 - 4qx + 2q^2 = 0$  are

a) Both negativeb) Both positivec) Both reald) One negative and one positive

14. If *a*, *b*, *c* are the sides of the triangle *ABC* such that  $a \neq b \neq c$  and  $x^2 - 2(a + b + c)x + 3\lambda$ (*ab* + *bc* + *ca*) = 0 has real roots, then

b + bc + ca) = 0 has real roots, then a)  $\lambda < \frac{4}{3}$  b)  $\lambda > \frac{5}{3}$  c)  $\lambda \in \left(\frac{4}{3}, \frac{5}{3}\right)$  d)  $\lambda \in \left(\frac{1}{3}, \frac{5}{3}\right)$ 

15. The centre of a regular polygon of *n* sides is located at the point z = 0 and one of its vertex  $z_1$  is known. If  $z_2$  be the vertex adjacent to  $z_1$ , then  $z_2$  is equal to

| a) $z_1\left(\cos\frac{2\pi}{n} \pm i\sin\frac{2\pi}{n}\right)$ | b) $z_1\left(\cos\frac{\pi}{n} \pm i\sin\frac{\pi}{n}\right)$ |
|-----------------------------------------------------------------|---------------------------------------------------------------|
| c) $z_1\left(\cos\frac{\pi}{2n} \pm i\sin\frac{\pi}{2n}\right)$ | d) None of these                                              |

16. Let  $z = \cos \theta + i \sin \theta$ . Then, the value of  $\sum_{m=1}^{15} \operatorname{Im}(z^{2m-1})$  at  $\theta = 2^{\circ}$  is a)  $\frac{1}{\sin 2^{\circ}}$  b)  $\frac{1}{3 \sin 2^{\circ}}$  c)  $\frac{1}{2 \sin 2^{\circ}}$  d)  $\frac{1}{4 \sin 2^{\circ}}$ 

17. Let  $a \in R$ . If the origin and the non-real roots of  $2z^2 + 2z + a = 0$  form the three vertices of an equilateral triangle in the argand plane, then a =

| a) 1 | b) 2 | c) —1 | d) None of these |
|------|------|-------|------------------|
|------|------|-------|------------------|

- 18. The region of the Argand diagram defined by  $|z 1| + |z + 1| \le 4$  isa) Interior of an ellipseb) Exterior of a circlec) Interior and boundary of an ellipsed) None of the above
- 19. The radius of the circle  $\left|\frac{z-i}{z+i}\right| = 5$  is given by

| a) $\frac{13}{12}$ | b) $\frac{5}{12}$ | c) 5 |
|--------------------|-------------------|------|
|--------------------|-------------------|------|

20. The roots of the cubic equation  $(z + \alpha\beta)^3 = \alpha^3, \alpha \neq 0$ 

- a) Represent sides of an equilateral triangle
- b) Represent the sides of an isosceles triangle
- c) Represent the sides of a triangle whose one side is of length  $\sqrt{3} \alpha$
- d) None of these

