CLASS : XIth
DATE :

Topic :- COMPLEX NUMBERS AND QUADRATIC EQUATIONS

1. The values of x satisfying $\left|x^{2}+4 x+3\right|+(2 x+5)=0$ are
a) $-4,-1-\sqrt{3}$
b) $4,1+\sqrt{3}$
c) $-4,1-\sqrt{3}$
d) $-4,1+\sqrt{3}$
2. If $x=\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}$ then $x^{2}(x-4)^{2}$ is equal to
a) 7
b) 4
c) 2
d) 1
3. If $\left|a_{k}\right|<1, \lambda_{k} \geq 0$ for $k=1,2, \ldots, n$ and $\lambda_{1}+\lambda_{2}+\ldots \lambda_{n}=1$, then the value of $\mid \lambda_{1} a_{1}+\lambda_{2} a_{2}+\ldots+\lambda_{n}$ $a_{n} \mid$ is
a) Equal to one
b) Greater than one
c) Zero
d) Less than one
4. If $\tan \alpha$ and $\tan \beta$ are roots of the equation $x^{2}+p x+q=0$ with $p \neq 0$, then
a) $\sin ^{2}(\alpha+\beta)+p \sin (\alpha+\beta) \cos (\alpha+\beta)+q \cos ^{2}(\alpha+\beta)=q$
b) $\tan (\alpha+\beta)=\frac{p}{q+1}$
c) $\cos (\alpha+\beta)=-p$
d) $\sin (\alpha+\beta)=1-q$
5. The amplitude of $\sin \frac{\pi}{5}+i\left(1-\cos \frac{\pi}{5}\right)$ is
a) $\frac{2 \pi}{5}$
b) $\frac{\pi}{15}$
c) $\frac{\pi}{10}$
d) $\frac{\pi}{5}$
6. The value of $\operatorname{sum} \sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)$, where $i=\sqrt{-1}$, equals
a) $-i$
b) $i-1$
c) $-i$
d) 0
7. If $x>0$ and $\log _{3} x+\log _{3}(\sqrt{3})+\log _{3}(\sqrt[4]{x})+\log _{3}(\sqrt[8]{x})+\log _{3}(\sqrt[16]{x})+\ldots=4$, then x equals
a) 9
b) 81
c) 1
d) 27
8. Is S is the set of all real x such that $\frac{2 x}{2 x^{2}+5 x+2}>\frac{1}{x+1}$, then S is equal to
a) $(-2,-1)$
b) $(-2 / 3,0)$
c) $(-2 / 3,-1 / 2)$
d) $(-2,-1) \cup(-2 / 3,-1 / 2)$
9. The value of p for which the difference between the roots of the equation $x^{2}+p x+8=0$ is 2 are
a) ± 2
b) ± 4
c) ± 6
d) ± 8
10. If $x^{2}+a x+10=0$ and $x^{2}+b x-10=0$ have a common root, then $a^{2}-b^{2}$ is equal to
a) 10
b) 20
c) 30
d) 40
11. If $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$ and z_{1}, z_{2}, z_{3} represent the vertices of an equilateral triangle, then
a) $z_{1}+z_{2}+z_{3}=0$ and $z_{1} z_{2} z_{3}=1$
b) $z_{1}+z_{2}+z_{3}=1$ and $z_{1} z_{2} z_{3}=1$
c) $z_{!} z_{2}+z_{2} z_{3}+z_{3} z_{1}=0$ and $z_{1}+z_{2}+z_{3}=0$
d) $z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}=0$ and $z_{1} z_{2} z_{3}=1$
12. If $\sqrt{x+i y}= \pm(a+i b)$, then $\sqrt{-x-i y}$ is equal to
a) $\pm(b+i a)$
b) $\pm(a-i b)$
c) $\pm(b-i a)$
d) None of these
13. If the roots of the equation $x^{2}+p x+q=0$ are α and β and roots of the equation x^{2} $-x r+s=0$ are α^{4}, β^{4}, then the roots of the equation $x^{2}-4 q x+2 q^{2}=0$ are
a) Both negative
b) Both positive
c) Both real
d) One negative and one positive
14. If a, b, care the sides of the triangle $A B C$ such that $a \neq b \neq c$ and $x^{2}-2(a+b+c) x+3 \lambda$ $(a b+b c+c a)=0$ has real roots, then
a) $\lambda<\frac{4}{3}$
b) $\lambda>\frac{5}{3}$
c) $\lambda \in\left(\frac{4}{3}, \frac{5}{3}\right)$
d) $\lambda \in\left(\frac{1}{3}, \frac{5}{3}\right)$
15. The centre of a regular polygon of n sides is located at the point $z=0$ and one of its vertex z_{1} is known. If z_{2} be the vertex adjacent to z_{1}, then z_{2} is equal to
a) $z_{1}\left(\cos \frac{2 \pi}{n} \pm i \sin \frac{2 \pi}{n}\right)$
b) $z_{1}\left(\cos \frac{\pi}{n} \pm i \sin \frac{\pi}{n}\right)$
c) $z_{1}\left(\cos \frac{\pi}{2 n} \pm i \sin \frac{\pi}{2 n}\right)$
d) None of these
16. Let $z=\cos \theta+i \sin \theta$. Then, the value of $\sum_{m=1}^{15} \operatorname{Im}\left(z^{2 m-1}\right)$ at $\theta=2^{\circ}$ is
a) $\frac{1}{\sin 2^{\circ}}$
b) $\frac{1}{3 \sin 2^{\circ}}$
c) $\frac{1}{2 \sin 2^{\circ}}$
d) $\frac{1}{4 \sin 2^{\circ}}$
17. Let $a \in R$. If the origin and the non-real roots of $2 z^{2}+2 z+a=0$ form the three vertices of an equilateral triangle in the argand plane, then $a=$
a) 1
b) 2
c) -1
d) None of these
18. The region of the Argand diagram defined by $|z-1|+|z+1| \leq 4$ is
a) Interior of an ellipse
b) Exterior of a circle
c) Interior and boundary of an ellipse
d) None of the above
19. The radius of the circle $\left|\frac{z-i}{z+i}\right|=5$ is given by
a) $\frac{13}{12}$
b) $\frac{5}{12}$
c) 5
d) 625
20. The roots of the cubic equation $(z+\alpha \beta)^{3}=\alpha^{3}, \alpha \neq 0$
a) Represent sides of an equilateral triangle
b) Represent the sides of an isosceles triangle
c) Represent the sides of a triangle whose one side is of length $\sqrt{3} \alpha$
d) None of these
