CLASS : XIth
DATE :

## TOpic :-COMPLEX NUMBERS AND QUADRATIC EQUATIONS

1. If $\alpha$ and $\beta$ be the roots of the equation $x^{2}+x \sqrt{\alpha}+\beta=0$, then
a) $\alpha=1$ and $\beta=-1$
b) $\alpha=1$ and $\beta=-2$
c) $\alpha=2$ and $\beta=1$
d) $\alpha=2$ and $\beta=-2$
2. The number of real roots of the equation $(x-1)^{2}+(x-2)^{2}+(x-3)^{2}=0$ is
a) 1
b) 2
c) 3
d) None of these
3. If $z(\neq-1)$ is a complex number such that $\frac{z-1}{z+1}$ is purely imaginary, then $|z|=$
a) 1
b) 2
c) 3
d) 5
4. If $z, z_{2}$ and $z_{3}$ are any three complex numbers, then the fourth vertex of the parallelogram whose three vertices are $z_{1}, z_{2}$ and $z_{3}$ taken in order is
a) $z_{1}-z_{2}+z_{3}$
b) $z_{1}+z_{2}+z_{3}$
c) $\frac{1}{3}\left(z_{1}-z_{2}+z_{3}\right)$
d) $\frac{1}{3}\left(z_{1}+z_{2}-z_{3}\right)$
5. If $z$ is a complex number such that $\operatorname{Re}(z)=\operatorname{Im}(z)$, then
a) $\operatorname{Re}\left(z^{2}\right)=0$
b) $\operatorname{Im}\left(z^{2}\right)=0$
c) $\operatorname{Re}\left(z^{2}\right)=\operatorname{Im}\left(z^{2}\right)$
d) $\operatorname{Re}\left(z^{2}\right)=-\operatorname{Im}\left(z^{2}\right)$

a) 1
b) -1
c) $\omega^{2}$
d) $-\omega$
6. Let $a$ be a complex number such that $|a|<1$ and $z_{1}, z_{2}, \ldots$ be vertices of a polygon such that $z_{k}$ $=1+a+a^{2}+\ldots+a^{k-1}$. Then the vertices of the polygon lie within a circle is
a) $|z-a|=a$
b) $\left|z-\frac{1}{1-a}\right|=|1-a|$
c) $\left|z-\frac{1}{1-a}\right|=\frac{1}{|1-a|}$
d) $|z-(1-a)|=|1-a|$
7. If $\alpha, \beta, \gamma$ are the roots of the equation $x^{3}-7 x+7=0$, then $\frac{1}{\alpha^{4}}+\frac{1}{\beta^{4}}+\frac{1}{\gamma^{4}}$ is
a) $7 / 3$
b) $3 / 7$
c) $4 / 7$
d) $7 / 4$
8. If $\sin \theta+\cos \theta=h$, then the quadratic equation having $\sin \theta$ and $\cos \theta$ as its roots, is
a) $x^{2}-h x+\left(h^{2}-1\right)=0$
b) $2 x^{2}-2 h x+\left(h^{2}-1\right)=0$
c) $x^{2}-h x+2\left(h^{2}-1\right)=0$
d) $x^{2}-2 h x+\left(h^{2}-1\right)=0$
9. If $\alpha$ and $\beta$ are the roots of the equation $a x^{2}+b x+c=0,(c \neq 0)$, then the equation whose roots are $\frac{1}{a \alpha+b}$ and $\frac{1}{a \beta+b}$ is
a) $a c x^{2}-b x+1=0$
b) $x^{2}-a c x+b c+1=0$
c) $a c x^{2}+b x-1=0$
d) $x^{2}+a c x-b c+11=0$
10. The value of $\sqrt{i}$ is
a) $1-i$
b) $1+i$
c) $i-1$
d) $\pm \frac{1}{\sqrt{2}}(1+i)$
11. If one root of the quadratic equation $a x^{2}+b x+c=0$ is equal to $n$th power of the other root, then the value of $\left(a c^{n}\right)^{1 /(n+1)}+\left(a^{n} c\right)^{1 /(n+1)}$ is equal to
a) $b$
b) $-b$
c) $\frac{1}{b^{n+1}}$
d) $-\frac{1}{b^{n+1}}$
12. The modulus of the complex number $z$ such that $|z+3-i|=1$ and $\arg (z)=\pi$ is equal to
a) 1
b) 2
c) 9
d) 3
13. The product of cube roots of -1 is equal to
a) -1
b) 0
c) -2
d) 4
14. If the roots of $x^{3}-3 x^{2}-6 x+8=0$ are in arithmetic progression, then the roots of the equation are
a) $3,4,5$
b) $4,7,10$
c) $-2,1,4$
d) 1, 4, 7
15. The number of values of a for which $\left(a^{2}-3 a+2\right) x^{2}+\left(a^{2}-5 a+6\right) x+a^{2}-4=0$ is an identity in $x$, is
a) 0
b) 2
c) 1
d) 3
16. If $z_{1}, z_{2}, z_{3}$ are vertices of an equilateral triangle inscribed in the circle $|z|=2$ and if $z_{1}=1+i \sqrt{3}$ , then
a) $z_{1}=-2, z_{3}=1-i \sqrt{3}$
b) $z_{2}=2, z_{3}=1-i \sqrt{3}$
c) $z_{2}=-2, z_{3}=-1-i \sqrt{3}$
d) $z_{2}=1-i \sqrt{3}, z_{3}=-1-i \sqrt{3}$
17. The solution set of the inequation $\frac{x^{2}-3 x+4}{x+1}>, x \in R$, is
a) $(3, \infty)$
b) $(-1,1) \cup(3, \infty)$
c) $[-1,1] \cup[3, \infty)$
d) None of these
18. The number of real solutions of the equation $\left(\frac{9}{10}\right)^{x}=-3+x-x^{2}$ is
a) None
b) One
c) Two
d) More than two
19. The quadratic equation whose roots are three times the roots of $3 a x^{2}+3 b x+c=0$ is
a) $a x^{2}+3 b x+3 c=0$
b) $a x^{2}+3 b x+c=0$
c) $9 a x^{2}+9 b x+c=0$
d) $a x^{2}+b x+3 c=0$

