

CLASS : XIth DATE :

Solutions

SUBJECT : MATHS DPP NO. : 6

Topic :- complex numbers and quadratic equations

1. If α and β be the roots of the equation $x^2 + x\sqrt{\alpha} + \beta = 0$, then a) $\alpha = 1$ and $\beta = -1$ b) $\alpha = 1$ and $\beta = -2$ c) $\alpha = 2$ and $\beta = 1$ d) $\alpha = 2$ and $\beta = -2$

- 2. The number of real roots of the equation $(x 1)^2 + (x 2)^2 + (x 3)^2 = 0$ is a) 1 b) 2 c) 3 d) None of these
- 3. If $z \neq -1$ is a complex number such that $\frac{z-1}{z+1}$ is purely imaginary, then |z| = a a) 1 b) 2 c) 3 d) 5

4. If z_1 , z_2 and z_3 are any three complex numbers, then the fourth vertex of the parallelogram whose three vertices are z_1 , z_2 and z_3 taken in order is

a) $z_1 - z_2 + z_3$ b) $z_1 + z_2 + z_3$ c) $\frac{1}{3}(z_1 - z_2 + z_3)$ d) $\frac{1}{3}(z_1 + z_2 - z_3)$

5. If z is a complex number such that Re (z) = Im (z), then a) Re $(z^2) = 0$ b) Im $(z^2) = 0$ c) Re $(z^2) = \text{Im } (z^2)$ d) Re $(z^2) = -\text{Im } (z^2)$

- 6. $\sqrt{-1 \sqrt{1 \sqrt{1 \dots \infty}}}$ is equal to a) 1 b) -1 c) ω^2 d) $-\omega$
- 7. Let *a* be a complex number such that |a| < 1 and $z_1, z_2,...$ be vertices of a polygon such that $z_k = 1 + a + a^2 + ... + a^{k-1}$. Then the vertices of the polygon lie within a circle is a) |z - a| = ab) $|z - \frac{1}{1-a}| = |1-a|$
 - c) $\left|z \frac{1}{1-a}\right| = \frac{1}{|1-a|}$ d) |z (1-a)| = |1-a|

8. If α , β , γ are the roots of the equation $x^3 - 7x + 7 = 0$, then $\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4}$ is a) 7/3 b) 3/7 c) 4/7 d) 7/4

9. If $\sin \theta + \cos \theta = h$, then the quadratic equation having $\sin \theta$ and $\cos \theta$ as its roots, is a) $x^2 - hx + (h^2 - 1) = 0$ b) $2x^2 - 2hx + (h^2 - 1) = 0$ c) $x^2 - hx + 2(h^2 - 1) = 0$ d) $x^2 - 2hx + (h^2 - 1) = 0$

10. If α and β are the roots of the equation $ax^2 + bx + c = 0$, $(c \neq 0)$, then the equation whose roots are $\frac{1}{2}$ and $\frac{1}{2}$ is					
	a) $acx^2 - bx + 1 = 0$		b) $x^2 - acx + bc + 1 =$	b) $x^2 - acx + bc + 1 = 0$	
	c) $acx^2 + bx - 1 = 0$		d) $x^2 + acx - bc + 11$	d) $x^2 + acx - bc + 11 = 0$	
11.	The value of \sqrt{l} is			1	
	a) 1 – <i>i</i>	b) 1 + <i>i</i>	c) <i>i</i> − 1	d) $\pm \frac{1}{\sqrt{2}}(1+i)$	
12. If one root of the quadratic equation $ax^2 + bx + c = 0$ is equal to <i>n</i> th power of the other root, then the value of $(ac^n)^{1/(n+1)} + (a^nc)^{1/(n+1)}$ is equal to					
	a) <i>b</i>	b) <i>-b</i>	c) $\frac{1}{b^{n+1}}$	$d) - \frac{1}{b^{n+1}}$	
13.	The modulus of the cor a) 1	nplex number <i>z</i> such t b)2	that $ z + 3 - i = 1$ and ar c) 9	$rg(z) = \pi$ is equal to d) 3	
14.	The product of cube ro a) -1	ots of -1 is equal to b)0	c) -2	d)4	
15. If the roots of $x^3 - 3x^2 - 6x + 8 = 0$ are in arithmetic progression, then the roots of the equ				the roots of the equation	
are					
	a) 3, 4, 5	b) 4, 7, 10	c) -2, 1, 4	d) 1, 4, 7	
16. The number of values of a for which $(a^2 - 3a + 2)x^2 + (a^2 - 5a + 6)x + a^2 - 4 = 0$ is an identity in <i>x</i> , is					
	a) 0	b) 2	c) 1	d)3	
17. If z_1, z_2, z_3 are vertices of an equilateral triangle inscribed in the circle $ z = 2$ and if $z_1 = 1 + i\sqrt{3}$, then a) $z_1 = -2, z_3 = 1 - i\sqrt{3}$					

a) $z_1 = -2, z_3 = 1 - i\sqrt{3}$ b) $z_2 = 2, z_3 = 1 - i\sqrt{3}$ c) $z_2 = -2, z_3 = -1 - i\sqrt{3}$ d) $z_2 = 1 - i\sqrt{3}, z_3 = -1 - i\sqrt{3}$

18. The solution set of the inequation $\frac{x^2 - 3x + 4}{x + 1} > x \in R$, is a) $(3,\infty)$ b) $(-1, 1) \cup (3,\infty)$ c) $[-1, 1] \cup [3,\infty)$ d) None of these

19. The number of real solutions of the equation $\left(\frac{9}{10}\right)^x = -3 + x - x^2$ is a) None b) One c) Two d) More than two

20. The quadratic equation whose roots are three times the roots of $3ax^2 + 3bx + c = 0$ is a) $ax^2 + 3bx + 3c = 0$ b) $ax^2 + 3bx + c = 0$ c) $9ax^2 + 9bx + c = 0$ d) $ax^2 + bx + 3c = 0$

