

CLASS : XIth DATE :

Solutions SUI

SUBJECT : MATHS DPP NO. : 5

Topic :- complex numbers and quadratic equations

1.	If $a + b + c = 0$, then t a) Equal	he roots of the equation b)Imaginary	$4ax^2 + 3bx + 2c = 0$ are c) Real	d)None of these			
2.	2. For how many values of k, $x^2 + x + 1 + 2k(x^2 - x - 1) = 0$ is a perfect square?						
	a) 2	b)0	c) 1	d) 3			
3.	The number of solutio	ns of $\frac{\log 5 + \log (x^2 + 1)}{\log (x - 2)} = 2$	2 is				
	a) 2	b) 3 $\log(x-2)$	c) 1	d)None of these			
4.	The number of real roots of the equation $ x ^2 - 3 x + 2 = 0$ is						
	a) 4	b)3	c) 2	d)1			
5. the	5. If the difference between the roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$ then						
		b) $a + b - 4 = 0$	c) $a - b - 4 = 0$	d) $a - b + 4 = 0$			
6.	The equation $\frac{3}{4}(\log_2 x)^2 + \log_2 x - \frac{5}{4} = \log_x \sqrt{2}$ has						
	a) At least one real solutions c) Exactly one irrational solution		b) Exactly three real solutions d) Complex roots				
7. the	If z_1, z_2, z_3 be three complex numbers such that $ z_1 + 1 \le 1, z_2 + 2 \le 2$ and $ z_3 + 4 \le 4$, then e maximum value of $ z_1 + z_2 + z_3 $ is						
	a) 7	b)10	c) 12	d)14			
8.	If $\log_{\sqrt{3}} 5 = a$ and $\log_{\sqrt{3}} 3$	$\log_{\sqrt{3}} 5 = a$ and $\log_{\sqrt{3}} 2 = b$, then $\log_{\sqrt{3}} 300$ is equal to					
	a) 2(a + b)	b) $2(a + b + 1)$	c) $2(a+b+2)$	d) $a + b + 4$			
9. the	9. If p,q,r,s,t are numbers such that $p + q < r + s$, $q + r < s + t$, $r + s < t + p$, $s + t , then the largest and smallest numbers are$						
	a) n and a respectively. b) r and t respectively. c) r and a respectively. d) a and n respectively.						

a) *p* and *q* respectively b) *r* and *t* respectively c) *r* and *q* respectively d) *q* and *p* respectively

10. The number of integra	al solutions of $\frac{x+2}{x^2+1} > \frac{1}{2}$ is b) 5	s c) 3	d)None of these			
11. Let α , β be the roots of the equation $x^2 - x + p = 0$ and γ , δ be the roots of $x^2 - 4x + q = 0$. If α , β , γ , δ are in GP, then integral values of <i>p</i> , <i>q</i> are respectively a) -2 , -32 b) -2 , 3 c) -6 , 3 d) -6 , -32						
	rs z_1 , z_2 , z_3 satisfying $\frac{z_1 + z_2}{z_2 - z_3}$	$z_3 = \frac{1 - i\sqrt{3}}{2}$, then triangle is b) A right angled triangle d) An obtuse angled isosceles triangle				
	ibe root of unity, then	c) 200	d)248			
14. The locus of <i>z</i> satisyin	,	1 where $z = x + iy$, is	-			
15. If the roots of $x^3 - 12x$ a) ± 1	$x^{2} + 39x - 28 = 0$ are in b) ± 2		difference is d) ± 4			
16. The solution set of the a) (2, 6)	e inequation $\frac{2}{ x-4 } > 1, x$ b) (2, 4) \cup (4, 6)		d)None of these			
17. The value of sum $\sum_{n=1}^{13}$ a) <i>i</i>	b) <i>i</i> – 1	c) — <i>i</i>	d)0			
18. If α and β are imagina a) 3	ry cube roots of unity, th b) 0	then $\alpha^4 + \beta^4 + \frac{1}{\alpha\beta}$ is equal c) 1	l to d) 2			
19. If <i>a,b,c</i> are all positive a) Real	b)Imaginary	c) Rational	d)Equal			
20. For all complex numbers $ z_1 - z_2 $ is a) 4	ers z_1 , z_2 satisfying $ z_1 $ = b) 3	= 12 and z ₂ – 3 – 4 <i>i</i> = c) 1	5, the minimum value of d)2			