CLASS : XIth
DATE :

TOpic :-COMPLEX NUMBERS AND QUADRATIC EQUATIONS

1. If $a+b+c=0$, then the roots of the equation $4 a x^{2}+3 b x+2 c=0$ are
a) Equal
b) Imaginary
c) Real
d) None of these
2. For how many values of $k, x^{2}+x+1+2 k\left(x^{2}-x-1\right)=0$ is a perfect square?
a) 2
b) 0
c) 1
d) 3
3. The number of solutions of $\frac{\log 5+\log \left(x^{2}+1\right)}{\log (x-2)}=2$ is
a) 2
b) 3
c) 1
d) None of these
4. The number of real roots of the equation $|x|^{2}-3|x|+2=0$ is
a) 4
b) 3
c) 2
d) 1
5. If the difference between the roots of $x^{2}+a x+b=0$ and $x^{2}+b x+a=0$ is same and $a \neq b$, then
a) $a+b+4=0$
b) $a+b-4=0$
c) $a-b-4=0$
d) $a-b+4=0$
6. The equation $\frac{3}{4}\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}=\log _{x} \sqrt{2}$ has
a) At least one real solutions
b) Exactly three real solutions
c) Exactly one irrational solution
d) Complex roots
7. If z_{1}, z_{2}, z_{3} be three complex numbers such that $\left|z_{1}+1\right| \leq 1,\left|z_{2}+2\right| \leq 2$ and $\left|z_{3}+4\right| \leq 4$, then the maximum value of $\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|$ is
a) 7
b) 10
c) 12
d) 14
8. If $\log _{\sqrt{3}} 5=a$ and $\log _{\sqrt{3}} 2=b$, then $\log _{\sqrt{3}} 300$ is equal to
a) $2(a+b)$
b) $2(a+b+1)$
c) $2(a+b+2)$
d) $a+b+4$
9. If p, q, r, s, t are numbers such that $p+q<r+s, q+r<s+t, r+s<t+p, s+t<p+q$, then the largest and smallest numbers are
a) p and q respectively
b) r and t respectively
c) r and q respectively
d) q and p respectively
10. The number of integral solutions of $\frac{x+2}{x^{2}+1}>\frac{1}{2}$ is
a) 4
b) 5
c) 3
d) None of these
11. Let α, β be the roots of the equation $x^{2}-x+p=0$ and γ, δ be the roots of $x^{2}-4 x+q=0$. If $\alpha, \beta, \gamma, \delta$ are in GP, then integral values of p, q are respectively
a) $-2,-32$
b) $-2,3$
c) $-6,3$
d) $-6,-32$
12. If the complex numbers z_{1}, z_{2}, z_{3} satisfying $\frac{z_{1}+z_{3}}{z_{2}-z_{3}}=\frac{1-i \sqrt{3}}{2}$, then triangle is
a) An equilateral triangle
b) A right angled triangle
c) A acute angled triangle
d) An obtuse angled isosceles triangle
13. If ω is a complex cube root of unity, then $225+\left(3 \omega+8 \omega^{2}\right)^{2}+\left(3 \omega^{2}+8 \omega\right)^{2}$ is equal to
a) 72
b) 192
c) 200
d) 248
14. The locus of z satisying the inequality $\left|\frac{z+2 i}{2 z+i}\right|<1$ where $z=x+i y$, is
a) $x^{2}+y^{2}<1$
b) $x^{2}-y^{2}<1$
c) $x^{2}+y^{2}>1$
d) $2 x^{2}+3 y^{2}<1$
15. If the roots of $x^{3}-12 x^{2}+39 x-28=0$ are in A.P., then their common difference is
a) ± 1
b) ± 2
c) ± 3
d) ± 4
16. The solution set of the inequation $\frac{2}{|x-4|}>1, x \neq 4$, is
a) $(2,6)$
b) $(2,4) \cup(4,6)$
c) $(-\infty, 2) \cup(6, \infty)$
d) None of these
17. The value of sum $\sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)$, where $i=\sqrt{-1}$, equals
a) i
b) $i-1$
c) $-i$
d) 0
18. If α and β are imaginary cube roots of unity, then $\alpha^{4}+\beta^{4}+\frac{1}{\alpha \beta}$ is equal to
a) 3
b) 0
c) 1
d) 2
19. If a, b, c are all positive and in H.P., then the roots of $a x^{2}+2 b x+c=0$ are
a) Real
b) Imaginary
c) Rational
d) Equal
20. For all complex numbers z_{1}, z_{2} satisfying $\left|z_{1}\right|=12$ and $\left|z_{2}-3-4 i\right|=5$, the minimum value of $\left|z_{1}-z_{2}\right|$ is
a) 4
b) 3
c) 1
d) 2
