

CLASS : XIth DATE :

Solutions

SUBJECT : MATHS DPP NO. : 4

Topic :- COMPLEX NUMBERS AND QUADRATIC EQUATIONS

- 1. The solution set of the inequation |x| 1 < 1 x, isa) (-1, 1)b) $(0, \infty)$ c) $(-1, \infty)$ d) None of these
- 2. If $(\sqrt{3} + i)^{10} = a + ib$, then *a* and *b* are respectively a) 128 & $128\sqrt{3}$ b) 64 & $-64\sqrt{3}$ c) $512 \& -512\sqrt{3}$ d) None of these
- 3. The number of real solutions of the equation $(5 + 2\sqrt{6})^{x^2-3} + (5 2\sqrt{6})^{x^2-3} = 10$, is a) 2 b) 4 c) 6 d) None of these
- 4. Number of roots of the equation $x \frac{2}{x-1} = 1 \frac{2}{x-1}$ is a) One b) Two c) Infinite d) None of these
- 5. The smallest positive integer *n* for which $(1 + i)^{2n} = (1 i)^{2n}$ is a) 1 b) 2 c) 3 d) 4
- 6. If $\frac{z-1}{z+1}$ is purely imaginary number $(z \neq -1)$, then |z| is equal to a) 1 b) 2 c) 3 d) 4
- 7. If one vertex of a square whose diagonals intersect at the origin is $3(\cos \theta + i \sin \theta)$, then the two adjacent vertices are
 - a) $\pm 3 (\sin \theta i \cos \theta)$ b) $\pm (\sin \theta + i \cos \theta)$ c) $\pm (\cos \theta i \sin \theta)$ d) None of these
- 8. If the sum of the roots of the equation $ax^2 + bx + c = 0$ is equal to the sum of the squares of their reciprocals of their reciprocals, then
 - a) $c^2 b, a^2 c, b^2 a$ are in A.P. b) $c^2 b, a^2 c, b^2 a$ are in G.P. c) $\frac{b}{c'b'a} \frac{c}{a}$ are in G.P. d) $\frac{a}{b'c'a} \frac{b}{c'a} \frac{c}{a}$ are in G.P.

9. In the argand plane, if *O*,*P* and *Q* represent respectively the origin *O* and the complex numbers z and z + iz respectively, then $\angle OPQ$ is

a) $\frac{\pi}{4}$ b) $\frac{\pi}{3}$ c) $\frac{\pi}{2}$ d) $\frac{2\pi}{3}$

10. If $n \in Z$, then $\frac{2^n}{(1-i)^{2n}} + \frac{(1+i)^{2n}}{2^n}$ is equal to			
a) 0	b)2	c) $[1 + (-1)^n]i^n$	d)None of these
11. Let α,β be the roots of the equation $x^2 - px + r = 0$ and $\frac{\alpha}{2}$, 2β be the roots of the equation $x^2 - qx + r = 0$. Then the value of r is			
a) $\frac{2}{9}(p-q)(2q-p)$	b) $\frac{2}{9}(q-p)(2p-q)$	c) $\frac{2}{9}(q-2p)(2q-p)$	d) $\frac{2}{9}(2p-q)(2q-p)$
12. If ω is an imaginary c a) 128 ω	ube root of unity, then (1 b) -128ω	$(1 + \omega - \omega^2)^7$ equals c) 128 ω	d) –128 ω ²
13. If $z + z^{-1} = 1$, then z^1 a) <i>i</i>	$x^{00} + z^{-100}$ is equal to b) $-i$	c) 1	d) —1
14. $\frac{3+2i\sin\theta}{1-2i\sin\theta}$ will be purely imaginary, if θ is equal to a) $2n\pi \pm \frac{\pi}{3}$ b) $n\pi + \frac{\pi}{3}$ c) $n\pi \pm \frac{\pi}{3}$ d) None of these			
- 5	- 5	$C \int nn \pm \frac{1}{3}$	d)None of these
15. If $x^2 + 2ax + 10 - 3a$ a) $-5 < a < 2$	> 0 for all $x \in R$, then b) $a < -5$	c) <i>a</i> > 5	d) 2 < <i>a</i> < 5
16. Let z_1, z_2 be two complex numbers such that $z_1 + z_2$ and $z_1 z_2$ both are real, then			
a) $z_1 = -z_2$	b) $z_1 = z_2$	c) $z_1 = -z_2$	d) $z_1 = z_2$
17. If $\operatorname{Im}\left(\frac{2z+1}{iz+1}\right) = -2$, then locus of z is			
a) A circle	b) <mark>A para</mark> bola	c) A straight line	d)None of these
18. Let 'z' be a complex m a) Locus of z is a pair c) $\arg(z) = \pm \frac{5\pi}{3}$		parameter such that $z^2 + b$) Locus of z is a circle d) $ z = -2 a $	
19. The points z_1 , z_2 , z_3 , z_4 in the complex plane are the vertices of a parallelogram taken in order, iff			

a) $z_1 + z_4 = z_2 + z_3$ b) $z_1 + z_3 = z_2 + z_4$ c) $z_1 + z_2 = z_3 + z_4$ d) None of these

20. If a real valued function f of a real variable x is such that $\frac{1}{(1+x)(1+x^2)} = \frac{A}{1+x} + \frac{f(x)}{1+x^2}$, then f(x) is equal to

a) $\frac{1-x}{2}$ b) $\frac{x^2+1}{2}$ c) 1-x d) None of these