CLASS : XIth
DATE :

Topic :- COMPLEX NUMBERS AND QUADRATIC EQUATIONS

1. The solution set of the inequation $|x|-1<1-x$, is
a) $(-1,1)$
b) $(0, \infty)$
c) $(-1, \infty)$
d) None of these
2. If $(\sqrt{3}+i)^{10}=a+i b$, then a and b are respectively
a) $128 \& 128 \sqrt{3}$
b) $64 \&-64 \sqrt{3}$
c) $512 \&-512 \sqrt{3}$
d) None of these
3. The number of real solutions of the equation $(5+2 \sqrt{6})^{x^{2}-3}+(5-2 \sqrt{6})^{x^{2}-3}=10$, is
a) 2
b) 4
c) 6
d) None of these
4. Number of roots of the equation $x-\frac{2}{x-1}=1-\frac{2}{x-1}$ is
a) One
b) Two
c) Infinite
d) None of these
5. The smallest positive integer n for which $(1+i)^{2 n}=(1-i)^{2 n}$ is
a) 1
b) 2
c) 3
d) 4
6. If $\frac{z-1}{z+1}$ is purely imaginary number $(z \neq-1)$, then $|z|$ is equal to
a) 1
b) 2
c) 3
d) 4
7. If one vertex of a square whose diagonals intersect at the origin is $3(\cos \theta+i \sin \theta)$, then the two adjacent vertices are
a) $\pm 3(\sin \theta-i \cos \theta)$
b) $\pm(\sin \theta+i \cos \theta)$
c) $\pm(\cos \theta-i \sin \theta)$
d) None of these
8. If the sum of the roots of the equation $a x^{2}+b x+c=0$ is equal to the sum of the squares of their reciprocals of their reciprocals, then
a) $c^{2} b, a^{2} c, b^{2} a$ are in A.P.
b) $c^{2} b, a^{2} c, b^{2} a$ are in G.P.
c) $\frac{b}{c}, \frac{a}{b}, \frac{c}{a}$ are in G.P.
d) $\frac{a}{b}, \frac{b}{c}, \frac{c}{a}$ are in G.P.
9. In the argand plane, if O, P and Q represent respectively the origin O and the complex numbers z and $z+i z$ respectively, then $\angle O P Q$ is
a) $\frac{\pi}{4}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{2}$
d) $\frac{2 \pi}{3}$
10. If $n \in Z$, then $\frac{2^{n}}{(1-i)^{2 n}}+\frac{(1+i)^{2 n}}{2^{n}}$ is equal to
a) 0
b) 2
c) $\left[1+(-1)^{n]} i^{n}\right.$
d) None of these
11. Let α, β be the roots of the equation $x^{2}-p x+r=0$ and $\frac{\alpha}{2}, 2 \beta$ be the roots of the equation x^{2} $-q x+r=0$. Then the value of r is
a) $\frac{2}{9}(p-q)(2 q-p)$
b) $\frac{2}{9}(q-p)(2 p-q)$
c) $\frac{2}{9}(q-2 p)(2 q-p)$
d) $\frac{2}{9}(2 p-q)(2 q-p)$
12. If ω is an imaginary cube root of unity, then $\left(1+\omega-\omega^{2}\right)^{7}$ equals
a) 128ω
b) -128ω
c) 128ω
d) $-128 \omega^{2}$
13. If $z+z^{-1}=1$, then $z^{100}+z^{-100}$ is equal to
a) i
b) $-i$
c) 1
d) -1
14. $\frac{3+2 i \sin \theta}{1-2 i \sin \theta}$ will be purely imaginary, if θ is equal to
a) $2 n \pi \pm \frac{\pi}{3}$
b) $n \pi+\frac{\pi}{3}$
c) $n \pi \pm \frac{\pi}{3}$
d) None of these
15. If $x^{2}+2 a x+10-3 a>0$ for all $x \in R$, then
a) $-5<a<2$
b) $a<-5$
c) $a>5$
d) $2<a<5$
16. Let z_{1}, z_{2} be two complex numbers such that $z_{1}+z_{2}$ and $z_{1} z_{2}$ both are real, then
a) $z_{1}=-z_{2}$
b) $z_{1}=\overline{z_{2}}$
c) $z_{1}=-\overline{z_{2}}$
d) $z_{1}=z_{2}$
17. If $\operatorname{Im}\left(\frac{2 z+1}{i z+1}\right)=-2$, then locus of z is
a) A circle
b) A parabola
c) A straight line
d) None of these
18. Let ' z ' be a complex number and ' a ' be a real parameter such that $z^{2}+a x+a^{2}=0$, then
a) Locus of z is a pair of straight lines
b) Locus of z is a circle
c) $\arg (z)= \pm \frac{5 \pi}{3}$
d) $|z|=-2|a|$
19. The points $z_{1}, z_{2}, z_{3}, z_{4}$ in the complex plane are the vertices of a parallelogram taken in order, iff
a) $z_{1}+z_{4}=z_{2}+z_{3}$
b) $z_{1}+z_{3}=z_{2}+z_{4}$
c) $z_{1}+z_{2}=z_{3}+z_{4}$
d) None of these
20. If a real valued function f of a real variable x is such that $\frac{1}{(1+x)\left(1+x^{2}\right)}=\frac{A}{1+x}+\frac{f(x)}{1+x^{2}}$, then $f(x)$ is equal to
a) $\frac{1-x}{2}$
b) $\frac{x^{2}+1}{2}$
c) $1-x$
d) None of these
