

CLASS: XIth DATE:

Solutions

SUBJECT: MATHS

DPP NO.: 3

Topic: - complex numbers and quadratic equations

1.	If $z^2 + z z + z ^2 = 0$, then the locus of z is a) A circle c) A pair of straight lines		b) A straight line d) None of these	
2.	If $ z - i = 1$ and $arg(z)$ a) $2i$	$\theta = \theta$, where $0 < \theta < \frac{\pi}{2}$, the big $-i$	then $\cot \theta - \frac{2}{z}$ equals c) i	d) 1 + i
3.		$(z_1) = z_2$ and $(z_2) = z_3$ and $(z_2) = z_3$	$z(z_2) = 0$, then $ z_1 - z_2 $ i c) $ z_1 - z_2 $	s equal to d) 0
4.	If <i>x,y,z</i> are real and distant a) Non-negative	tinct, then $x^2 + 4y^2 + 9z$ b) Non-positive	$x^2 - 6 yz - 3 zx - 2 xy$ is c) Zero	always d) None of these
5. exte		of the circle which toucl complex numbers) will b b) A hyperbola	thes the circles $ z - z_1 =$ the conditions of the condition of the con	a and $ z - z_2 = b$ d) None of these
6.		itude of $(1+i\sqrt{3})^8$ are r b) 256 and $\frac{2\pi}{3}$		d) 256 and $\frac{8\pi}{3}$
7.	The solution set of the a) (a,b) $(-\infty, -b) \cup (-a,\infty)$	inequation $x^2 + (a + b)x$ b) $(-\infty,a) \cup (b,\infty)$		d)
	3. If ω is an imaginary cube root of unity and $x = a + b$, $y = a\omega + b\omega^2$, $z = a\omega^2 + b\omega$, then $x^2 + y^2 + z^2$ is equal to a) $6ab$ b) $3ab$ c) $6a^2b^2$ d) $3a^2b^2$			
9.	The square roots of -7	7, $-24\sqrt{-1}$ are	c) $\pm (3 - 4\sqrt{-1})$,
10.	A real value of x will sa a) $\alpha^2 - \beta^2 = -1$	5 10.	$\left(\frac{x}{x}\right) = \alpha - i\beta \ (\alpha, \beta \text{ are real})$ $c) \alpha^2 + \beta^2 = 1$	

- 11. If $\omega(\neq 1)$ is a cube root of unity and $(1+\omega)^7 = A + B\omega$, then A and B are respectively
 - a) 0, 1
- b) 1, 1

c) 1, 0

- d) -1, 1
- 12. If the equation $x^2 + 9y^2 4x + 3 = 0$ is satisfied values of x and y, then
 - a) $1 \le x \le 3$
- b) $2 \le x \le 3$
- c) $-\frac{1}{3} < y < 1$ d) $0 < y < \frac{2}{3}$
- 13. If the sum of the roots of the equation $(a + 1)x^2 + (2a + 3)x + (3a + 4) = 0$ is -1, then the product of the roots is
 - a) 0

b) 1

c) 2

- d)3
- 14. The roots of the equation $2^{x+2}3^{3x/(x-1)} = 9$ are given by
 - a) $1 \log_2 3$, 2
- b) $\log_2\left(\frac{2}{3}\right)$, 1
- c) 2, -2
- d) -2, $1 \frac{\log 3}{\log 2}$
- 15. If a + b + c = 0 and $a \ne c$ then the roots of the equation $(b + c a)x^2 + (c + a b)x + c$ (a + b - c) = 0, are
 - a) Real and unequal
 - b) Real and equal
 - c) Imaginary
 - d) None of these
- 16. If α,β are the roots of the equation $x^2 + \sqrt{\alpha}x + \beta = 0$, then the values of α and β are
 - a) $\alpha = 1, \beta = -1$
- b) $\alpha = 1, \beta = -2$ c) $\alpha = 2, \beta = 1$
- d) $\alpha = 2.\beta = -2$
- 17. If b > a, then the equation (x a)(x b) 1 = 0 has
 - a) Both roots in [a,b]
 - b) Both roots in $(-\infty,a)$
 - c) Roots in $(-\infty,a)$ and other in (b,∞)
 - d) Both roots in (b, ∞)
- 18. The value of $\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)...\infty$ is
 - a) 1

d) None of these

- The value of the expression
- $2(1+\frac{1}{\omega})(1+\frac{1}{\omega^2})+3(2+\frac{1}{\omega})(2+\frac{1}{\omega^2})+...+(n+1)(n+\frac{1}{\omega})(n+\frac{1}{\omega^2})$ is
- b) $\left[\frac{n(n+1)}{2}\right]^2 n$ c) $\left[\frac{n(n+1)}{2}\right]^2 + n$
- d) None of these

- 20. One of the square root of $6 + 4\sqrt{3}$ is

 - a) $\sqrt{3}(\sqrt{3}+1)$ b) $-\sqrt{3}(\sqrt{3}-1)$ c) $\sqrt{3}(-\sqrt{3}+1)$
- d) None of these