CLASS : XIth
DATE :

TOpic :-COMPLEX NUMBERS AND QUADRATIC EQUATIONS

1. If $z^{2}+z|z|+|z|^{2}=0$, then the locus of z is
a) A circle
b) A straight line
c) A pair of straight lines
d) None of these
2. If $|z-i|=1$ and $\arg (z)=\theta$, where $0<\theta<\frac{\pi}{2}$, then $\cot \theta-\frac{2}{z}$ equals
a) $2 i$
b) $-i$
c) i
d) $1+i$
3. If for complex numbers z_{1} and $z_{2}, \arg \left(z_{1}\right)-\arg \left(z_{2}\right)=0$, then $\left|z_{1}-z_{2}\right|$ is equal to
a) $\left|z_{1}\right|+\left|z_{2}\right|$
b) $\left|z_{1}\right|-\left|z_{2}\right|$
c) $\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$
d) 0
4. If x, y, z are real and distinct, then $x^{2}+4 y^{2}+9 z^{2}-6 y z-3 z x-2 x y$ is always
a) Non-negative
b) Non-positive
c) Zero
d) None of these
5. The locus of the centre of the circle which touches the circles $\left|z-z_{1}\right|=a$ and $\left|z-z_{2}\right|=b$ externally (z, z_{1} and z_{2} are complex numbers) will be
a) An ellipse
b) A hyperbola
c) A circle
d) None of these
6. The modulus and amplitude of $(1+i \sqrt{3})^{8}$ are respectively
a) 256 and $\frac{\pi}{3}$
b) 256 and $\frac{2 \pi}{3}$
c) 2 and $\frac{2 \pi}{3}$
d) 256 and $\frac{8 \pi}{3}$
7. The solution set of the inequation $x^{2}+(a+b) x+a b<0, a<b$, is
a) (a, b)
b) $(-\infty, a) \cup(b, \infty)$
c) $(-b,-a)$
d)
$(-\infty,-b) \cup(-a, \infty)$
8. If ω is an imaginary cube root of unity and $x=a+b, y=a \omega+b \omega^{2}, z=a \omega^{2}+b \omega$, then $x^{2}+y^{2}$ $+z^{2}$ is equal to
a) $6 a b$
b) $3 a b$
c) $6 a^{2} b^{2}$
d) $3 a^{2} b^{2}$
9. The square roots of $-7,-24 \sqrt{-1}$ are
a) $\pm(4+3 \sqrt{-1})$
b) $\pm(3+4 \sqrt{-1})$
c) $\pm(3-4 \sqrt{-1})$
d) $\pm(4-3 \sqrt{-1})$
10. A real value of x will satisfy the equation $\left(\frac{3-4 i x}{3+4 i x}\right)=\alpha-i \beta$ (α, β are real), if
a) $\alpha^{2}-\beta^{2}=-1$
b) $\alpha^{2}-\beta^{2}=1$
c) $\alpha^{2}+\beta^{2}=1$
d) $\alpha^{2}-\beta^{2}=2$
11. If $\omega(\neq 1)$ is a cube root of unity and $(1+\omega)^{7}=A+B \omega$, then A and B are respectively
a) 0,1
b) 1, 1
c) 1,0
d) $-1,1$
12. If the equation $x^{2}+9 y^{2}-4 x+3=0$ is satisfied values of x and y, then
a) $1 \leq x \leq 3$
b) $2 \leq x \leq 3$
c) $-\frac{1}{3}<y<1$
d) $0<y<\frac{2}{3}$
13. If the sum of the roots of the equation $(a+1) x^{2}+(2 a+3) x+(3 a+4)=0$ is -1 , then the product of the roots is
a) 0
b) 1
c) 2
d) 3
14. The roots of the equation $2^{x+2} 3^{3 x /(x-1)}=9$ are given by
a) $1-\log _{2} 3,2$
b) $\log _{2}\left(\frac{2}{3}\right), 1$
c) $2,-2$
d) $-2,1-\frac{\log 3}{\log 2}$
15. If $a+b+c=0$ and $a \neq c$ then the roots of the equation $(b+c-a) x^{2}+(c+a-b) x+$ $(a+b-c)=0$, are
a) Real and unequal
b) Real and equal
c) Imaginary
d) None of these
16. If α, β are the roots of the equation $x^{2}+\sqrt{\alpha} x+\beta=0$, then the values of α and β are
a) $\alpha=1, \beta=-1$
b) $\alpha=1, \beta=-2$
c) $\alpha=2, \beta=1$
d) $\alpha=2, \beta=-2$
17. If $b>a$, then the equation $(x-a)(x-b)-1=0$ has
a) Both roots in $[a, b]$
b) Both roots in $(-\infty, a)$
c) Roots in $(-\infty, a)$ and other in (b, ∞)
d) Both roots in (b, ∞)
18. The value of $\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\left(\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}\right) \ldots \infty$ is
a) 1
b) 0
c) -1
d) None of these
19. The value of the expression
$2\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^{2}}\right)+3\left(2+\frac{1}{\omega}\right)\left(2+\frac{1}{\omega^{2}}\right)+\ldots+(n+1)\left(n+\frac{1}{\omega}\right)\left(n+\frac{1}{\omega^{2}}\right)$ is
a) $\left[\frac{n(n+1)}{2}\right]^{2}$
b) $\left[\frac{n(n+1)}{2}\right]^{2}-n$
c) $\left[\frac{n(n+1)}{2}\right]^{2}+n$
d) None of these
20. One of the square root of $6+4 \sqrt{3}$ is
a) $\sqrt{3}(\sqrt{3}+1)$
b) $-\sqrt{3}(\sqrt{3}-1)$
c) $\sqrt{3}(-\sqrt{3}+1)$
d) None of these
