

CLASS: XIth DATE:

Solutions

SUBJECT: MATHS

DPP NO.: 2

Topic: - complex numbers and quadratic equations

1.	The number of integral solutions of $2(x + 2) > x^2 + 1$, is			
	a) 2	b) 3	c) 4	d)5
2. grea	If one root of the equat atest value of <i>b</i> is a) 9/8	ion $(a - b)x^2 + ax + 1 =$ b) 7/8	o be double the other a	and if $a \in R$, then the d) 8/7
3.	The argument of $(1-i\sqrt{3})(1+i\sqrt{3})$ is			
	a) 60°	b) 120°	c) 210°	d) 240°
4.	If the area of the triang n the value of $ 3z $ must a) 20	le on the complex plane be equal to b) 40	formed by the points z ,	z + iz, and iz is 200, d)80
5.	the roots of the equation $\frac{bx^2}{cx} + cx + a = 0$ be imaginary, then for all real values of x , the			
expression $3b^2x^2 + 6bcx + 2c^2$ is				
	a) Greater than 4 <i>ab</i>	b) Less than 4ab	c) Greater than $-4ab$	d) Less than $-4ab$
6.	If $(ax^2 + c)y + (dx^2 + c') = 0$ and x is a rational function of y and ac is negative, then			
	a) $ac' + a'c = 0$		c) $a^2 + c^2 = a'^2 + c'^2$	
7.		c, then $(1 + i\sqrt{3})^n + (1 - b) 2^n \cos \frac{n\pi}{3}$		d) None of these
8.	The points represented a) Vertices of an equila c) Collinear		is $1 + i$, $-2 + 3i\frac{5}{3}i$ on the argand diagram are b) Vertices of an isosceles triangle d) None of the above	
9.	If the amplitude of $z - 2 - 3i$ is $\frac{\pi}{4}$, then the locus of $z = x + iy$, is a) $x + y - 1 = 0$ b) $x - y - 1 = 0$ c) $x + y + 1 = 0$ d) $x - y + 1 = 0$			
	$a_j x + y - 1 - 0$	0)x - y - 1 - 0	CJ x + y + 1 - 0	$u_j x - y + 1 - 0$

10. The value of

 $\frac{[(\cos 20^{\circ} + i \sin 20^{\circ})(\cos 75^{\circ} + i \sin 75^{\circ})(\cos 10^{\circ} + i \sin 10^{\circ})]}{\sin 15^{\circ} - i \cos 15^{\circ}}$ is

a) 0

b)-1

c) i

11. Let α,β be the roots of $x^2 + bx + 1 = 0$. Then the equation whose roots are $-\left(\alpha + \frac{1}{\beta}\right)$ and - $(\beta + \frac{1}{\alpha})$, is

- a) $x^2 = 0$
- b) $x^2 + 2b + 4 = 0$ c) $x^2 2bx + 4 = 0$ d) $x^2 bx + 1 = 0$

12. The vector z = -4 + 5i is turned counterclockwise through an angle of 180° and stretched $1\frac{1}{2}$ times. The complex number corresponding to newly obtained vector is

- a) $6 \frac{15}{2}i$
- b) $-6 + \frac{15}{2}i$
- c) $6 + \frac{15}{2}i$
- d) None of these

13. If $(3-i)z = (3-i)\overline{z}$, then the complex number z is

- a) a(3-i), $a \in R$ b) $\frac{a}{(3+i)}$, $a \in R$
- c) $a(3+i), a \in R$ d) $a(-3+i), a \in R$

14. For real values of x, the expression $\frac{(x-b)(x-c)}{(x-a)}$ will assume all real values provided

- a) $a \le c \le b$
- b) $b \ge a \ge c$
- c) $b \le c \le a$
- d) $a \ge b \ge c$

15. If $(x-1)^3$ is a factor of $x^4 + ax^3 + bx^2 + cx - 1$, then the other factor is

- a) x 3
- b) x + 1
- d)x-1

16. The centre of a square is at the origin and 1+i is one of its vertices. The extremities of its diagonals which does not pass through this vertex are

- a) 1 i, -1 + i
- b) 1 i, -1 i
- c) -1 + i, -1 i
- d) None of these

17. If $p(x) = ax^2 + bx + c$ and $Q(x) = -ax^2 + dx + c$, where $ac \ne 0$, then P(x)Q(x) = 0 has at least

a) Four real roots

b) Two real roots

c) Four imaginary roots

d) None of these

18. If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to

- a) $\cot \frac{\theta}{a}$
- b) $\cot \theta$
- c) $i\cot\frac{\theta}{2}$
- d) itan $\frac{\theta}{a}$

19. If $x^2 + 2ax + b \ge c$, $\forall x \in R$, then

- a) $a c \ge a^2$
- b) $c a \ge b^2$
- c) $a b \ge c^2$
- d) None of these

20. Let A,B,C be three collinear points which are such that AB. AC = 1 and the points are represented in the Argand plane by the complex numbers 0, z_1 and z_2 respectively, Then,

- a) $z_1 z_2 = 1$
- b) $z_1\overline{z}_2=1$
- c) $|z_1||z_2| = 1$
- d) None of these