CLASS : XIth
DATE :

Topic :- COMPLEX NUMBERS AND QUADRATIC EQUATIONS

1. The number of integral solutions of $2(x+2)>x^{2}+1$, is
a) 2
b) 3
c) 4
d) 5
2. If one root of the equation $(a-b) x^{2}+a x+1=0$ be double the other and if $a \in R$, then the greatest value of b is
a) $9 / 8$
b) $7 / 8$
c) $8 / 9$
d) $8 / 7$
3. The argument of $(1-i \sqrt{3})(1+i \sqrt{3})$ is
a) 60°
b) 120°
c) 210°
d) 240°
4. If the area of the triangle on the complex plane formed by the points $z, z+i z$, and $i z$ is 200 , then the value of $|3 z|$ must be equal to
a) 20
b) 40
c) 60
d) 80
5. If the roots of the equation $b x^{2}+c x+a=0$ be imaginary, then for all real values of x, the expression $3 b^{2} x^{2}+6 b c x+2 c^{2}$ is
a) Greater than $4 a b$
b) Less than $4 a b$
c) Greater than $-4 a b$
d) Less than $-4 a b$
6. If $\left(a x^{2}+c\right) y+\left(d x^{2}+c^{\prime}\right)=0$ and x is a rational function of y and $a c$ is negative, then
a) $a c^{\prime}+a^{\prime} c=0$
b) $\frac{a}{a^{\prime}}=\frac{c}{c^{\prime}}$
c) $a^{2}+c^{2}=a^{\prime 2}+c^{\prime 2}$
d) $a a^{\prime}+c c^{\prime}=1$
7. If n is a positive integer, then $(1+i \sqrt{3})^{n}+(1-i \sqrt{3})^{n}$ is equal to
a) $2^{n-1} \cos \frac{n \pi}{3}$
b) $2^{n} \cos \frac{n \pi}{3}$
c) $2^{n+1} \cos \frac{n \pi}{3}$
d) None of these
8. The points represented by the complex numbers $1+i,-2+3 i, \frac{5}{3} i$ on the argand diagram are
a) Vertices of an equilateral triangle
b) Vertices of an isosceles triangle
c) Collinear
d) None of the above
9. If the amplitude of $z-2-3 i$ is $\frac{\pi}{4}$, then the locus of $z=x+i y$, is
a) $x+y-1=0$
b) $x-y-1=0$
c) $x+y+1=0$
d) $x-y+1=0$
10. The value of $\frac{\left[\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)\left(\cos 75^{\circ}+i \sin 75^{\circ}\right)\left(\cos 10^{\circ}+i \sin 10^{\circ}\right)\right]}{\sin 15^{\circ}-i \cos 15^{\circ}}$ is
a) 0
b) -1
c) i
d) 1
11. Let α, β be the roots of $x^{2}+b x+1=0$. Then the equation whose roots are $-\left(\alpha+\frac{1}{\beta}\right)$ and $\left(\beta+\frac{1}{\alpha}\right)$, is
a) $x^{2}=0$
b) $x^{2}+2 b+4=0$
c) $x^{2}-2 b x+4=0$
d) $x^{2}-b x+1=0$
12. The vector $z=-4+5 i$ is turned counterclockwise through an angle of 180° and stretched $1 \frac{1}{2}$ times. The complex number corresponding to newly obtained vector is
a) $6-\frac{15}{2} i$
b) $-6+\frac{15}{2} i$
c) $6+\frac{15}{2} i$
d) None of these
13. If $(3-i) z=(3-i) \bar{z}$, then the complex number z is
a) $a(3-i), a \in R$
b) $\frac{a}{(3+i)}, a \in R$
c) $a(3+i), a \in R$
d) $a(-3+i), a \in R$
14. For real values of x, the expression $\frac{(x-b)(x-c)}{(x-a)}$ will assume all real values provided
a) $a \leq c \leq b$
b) $b \geq a \geq c$
c) $b \leq c \leq a$
d) $a \geq b \geq c$
15. If $(x-1)^{3}$ is a factor of $x^{4}+a x^{3}+b x^{2}+c x-1$, then the other factor is
a) $x-3$
b) $x+1$
c) $x+2$
d) $x-1$
16. The centre of a square is at the origin and $1+i$ is one of its vertices. The extremities of its diagonals which does not pass through this vertex are
a) $1-i,-1+i$
b) $1-i,-1-i$
c) $-1+i,-1-i$
d) None of these
17. If $p(x)=a x^{2}+b x+c$ and $Q(x)=-a x^{2}+d x+c$, where $a c \neq 0$, then $P(x) Q(x)=0$ has at least
a) Four real roots
b) Two real roots
c) Four imaginary roots
d) None of these
18. If $a=\cos \theta+i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to
a) $\cot \frac{\theta}{2}$
b) $\cot \theta$
c) $i \cot \frac{\theta}{2}$
d) $i \tan \frac{\theta}{2}$
19. If $x^{2}+2 a x+b \geq c, \forall x \in R$, then
a) $a-c \geq a^{2}$
b) $c-a \geq b^{2}$
c) $a-b \geq c^{2}$
d) None of these
20. Let A, B, C be three collinear points which are such that $A B . A C=1$ and the points are represented in the Argand plane by the complex numbers $0, z_{1}$ and z_{2} respectively, Then,
a) $z_{1} z_{2}=1$
b) $z_{1} \bar{Z}_{2}=1$
c) $\left|z_{1}\right|\left|z_{2}\right|=1$
d) None of these
