

CLASS : XIth DATE :

Solutions

SUBJECT : MATHS DPP NO. : 10

Topic :- complex numbers and quadratic equations

- 1. If α is a root of the equation 2x(2x + 1) = 1, then the other roots is a) $3\alpha^3 - 4\alpha$ b) $-2\alpha(\alpha + 1)$ c) $4\alpha^3 - 3\alpha$ d) None of these
- 2. If the roots of the equation $x^2 bx + c = 0$ be two consecutive integers, then $b^2 4c$ equals a) 1 b) 2 c) 3 d)-2
- 3. If *x*, *y*, *z* are in GP and $a^x = b^y = c^z$, then a) $\log_a c = \log_b a$ b) $\log_b a = \log_c b$ c) $\log_c b = \log_a c$ d) None of the above
- 4. If the complex numbers $z_1 = a + i$, $z_2 = 1 + +ib$, $z_3 = 0$ form the vertices of equilateral triangle (*a*, *b* are real numbers between 0 and 1), then
 - a) $a = \sqrt{3} 1$, $b = \frac{\sqrt{3}}{2}$ b) $a = 2 - \sqrt{3}$, $b = 2 - \sqrt{3}$ c) a = 1/2, b = 3/4d) None of these
- 5. Sum of the series $\sum_{r=0}^{n} (-1)^{r} {}^{n}C_{r} \{ i^{5r} + i^{6r} + i^{7r} + i^{8r} \}$, is a) 2^{n} b) $2^{n/2+1}$ c) $n^{n} + 2^{n/2+1}$ d) $2^{n} + 2^{n/2+1} \cos \frac{n\pi}{4}$
- 6. If *a*, *b* and *c* are distinct positive real numbers in AP, then the roots of the equation $ax^2 + 2bx + c = 0$ are

a) Imaginary b) Rational and equal c) Rational and distinct d) Irrational

- 7. Let $z(\neq 2)$ be a complex number such that $\log_{1/2}|z-2| > \log_{1/2}|z|$, then a) Re (*z*) > 1 b) Im (*z*) > 1 c) Re (*z*) = 1 d) Im (*z*) = 1
- 8. The equation $z^5 + z^4 + z^3 + z^2 + z + 1 = 0$ is satisfied by a) $z = \pm 1$ b) z = -1 c) $z = \pm \frac{1}{2} + \frac{i\sqrt{3}}{2}$ d) None of the above
- 9. The equation $x^2 3|x| + 2 = 0$ has a) No real root b) One real root c) Two real roots d) Four real roots

10. If one root of the equation $x^2 + px + 12 = 0$ is 4, while the equation $x^2 + px + q = 0$ has equal roots, then the value of q is

a) 4 b) 12 c) 3 d) $\frac{49}{4}$

11. If $[x]^2 = [x + 2]$, where [x] = the greatest integer less than or equal to *x*, then *x* must be such that

a)
$$x = 2, -1$$
 b) $[-1, 0] \cup [2, 3]$ c) $x \in [-1, 0]$ d) None of these

12. If α,β are the roots of $ax^2 + bx + c = 0$ the equation whose roots are $2 + \alpha, 2 + \beta$ is a) $ax^2 + x(4a - b) + 4a - 2b + c = 0$ b) $ax^2 + x(4a - b) + 4a + 2b + c = 0$ c) $ax^2 + x(b - 4a) + 4a + 2b + c = 0$ d) $ax^2 + x(b - 4a) + 4a - 2b + c = 0$

- 13. If α,β and γ are angles such that $\tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \tan \beta \tan \gamma$ and x =
- $\cos \alpha + i \sin \alpha$, $y = \cos \beta + i \sin \beta$ and $z = \cos \gamma + i \sin \gamma$, then *xyz* is equal to a) 1, but not -1 b) -1, but not 1 c) +1 or -1 d) 0
- 14. If $\arg(z_1z_2) = 0$ and $|z_1| = |z_2| = 1$, then a) $z_1 + z_2 = 0$ b) $z_1\overline{z_2} = 1$ c) $z_1 = \overline{z_2}$ d) None of these

15. If the equation $2x^2 - 7x + 1 = 0$ and $ax^2 + bx + 2 = 0$ have a common root, then a) a = 2, b = -7 b) $a = -\frac{7}{2}, b = 1$ c) a = 4, b = -14 d) None of these

16. The polynomial $x^{3m} + x^{3n+1} + x^{3k+2}$ is exactly divisible by $x^2 + x + 1$ if a) *m*,*n*,*k* are rational

- b)*m,n,k* are integers
- c) *m,n,k* are positive integers
- d) None of these

17. If *a*, *b*, *c*
$$\neq$$
 0 and belongs to the set {0, 1,2, 3, ..., 9},
Then $\log_{10}\left(\frac{a+10b+10^2c}{10^{-4}a+10^{-3}b+10^{-2}c}\right)$ is equal to
a) 1 b) 2 c) 3 d) 4

18. If the roots of the equation $x^2 + px + q = 0$ are $\tan 30^\circ$ and $\tan 15^\circ$ respectively, then the value of 2 + q - p is a) 3 b) 0 c) 1 d) 2

19. If z = x - iy and $z^{1/3} = p + iq$, then $(\frac{x}{p} + \frac{y}{q})/(p^2 + q^2)$ is equal to a) 1 b) -1 c) 2 d) -2

20. If sec α and cosec α are the roots of the equation $x^2 - px + q = 0$, then a) $p^2 = p + 2q$ b) $q^2 = p + 2q$ c) $p^2 = q(q + 2)$ d) $q^2 = p(p + 2)$