CLASS : XIth
DATE :

TOpic :- COMPLEX NUMBERS AND QUADRATIC EqUATIONS

1. If α is a root of the equation $2 x(2 x+1)=1$, then the other roots is
a) $3 \alpha^{3}-4 \alpha$
b) $-2 \alpha(\alpha+1)$
c) $4 \alpha^{3}-3 \alpha$
d) None of these
2. If the roots of the equation $x^{2}-b x+c=0$ be two consecutive integers, then $b^{2}-4 c$ equals
a) 1
b) 2
c) 3
d) -2
3. If x, y, z are in GP and $a^{x}=b^{y}=c^{z}$, then
a) $\log _{a} c=\log _{b} a$
b) $\log _{b} a=\log _{c} b$
c) $\log _{c} b=\log _{a} c$
d) None of the above
4. If the complex numbers $z_{1}=a+i, z_{2}=1++i b, z_{3}=0$ form the vertices of equilateral triangle (a, b are real numbers between 0 and 1), then
a) $a=\sqrt{3}-1, b=\frac{\sqrt{3}}{2}$
b) $a=2-\sqrt{3}, b=2-\sqrt{3}$
c) $a=1 / 2, b=3 / 4$
d) None of these
5. Sum of the series $\sum_{r=0}^{n}(-1)^{r n} C_{r}\left\{i^{5 r}+i^{6 r}+i^{7 r}+i^{8 r}\right\}$, is
a) 2^{n}
b) $2^{n / 2+1}$
c) $n^{n}+2^{n / 2+1}$
d) $2^{n}+2^{n / 2+1} \cos \frac{n \pi}{4}$
6. If a, b and c are distinct positive real numbers in AP , then the roots of the equation $a x^{2}$ $+2 b x+c=0$ are
a) Imaginary
b) Rational and equal
c) Rational and distinct d) Irrational
7. Let $z(\neq 2)$ be a complex number such that $\log _{1 / 2}|z-2|>\log _{1 / 2}|z|$, then
a) $\operatorname{Re}(z)>1$
b) $\operatorname{Im}(z)>1$
c) $\operatorname{Re}(z)=1$
d) $\operatorname{Im}(z)=1$
8. The equation $z^{5}+z^{4}+z^{3}+z^{2}+z+1=0$ is satisfied by
a) $z= \pm 1$
b) $z=-1$
c) $z= \pm \frac{1}{2}+\frac{i \sqrt{3}}{2}$
d) None of the above
9. The equation $x^{2}-3|x|+2=0$ has
a) No real root
b) One real root
c) Two real roots
d) Four real roots
10. If one root of the equation $x^{2}+p x+12=0$ is 4 , while the equation $x^{2}+p x+q=0$ has equal roots, then the value of q is
a) 4
b) 12
c) 3
d) $\frac{49}{4}$
11. If $[x]^{2}=[x+2]$, where $[x]=$ the greatest integer less than or equal to x, then x must be such that
a) $x=2,-1$
b) $[-1,0] \cup[2,3]$
c) $x \in[-1,0]$
d) None of these
12. If α, β are the roots of $a x^{2}+b x+c=0$ the equation whose roots are $2+\alpha, 2+\beta$ is
a) $a x^{2}+x(4 a-b)+4 a-2 b+c=0$
b) $a x^{2}+x(4 a-b)+4 a+2 b+c=0$
c) $a x^{2}+x(b-4 a)+4 a+2 b+c=0$
d) $a x^{2}+x(b-4 a)+4 a-2 b+c=0$
13. If α, β and γ are angles such that $\tan \alpha+\tan \beta+\tan \gamma=\tan \alpha \tan \beta \tan \gamma$ and $x=$ $\cos \alpha+i \sin \alpha, y=\cos \beta+i \sin \beta$ and $z=\cos \gamma+i \sin \gamma$, then $x y z$ is equal to
a) 1 , but not -1
b) -1 , but not 1
c) +1 or -1
d) 0
14. If $\arg \left(z_{1} z_{2}\right)=0$ and $\left|z_{1}\right|=\left|z_{2}\right|=1$, then
a) $z_{1}+z_{2}=0$
b) $\overline{z_{1}} \overline{z_{2}}=1$
c) $z_{1}=\overline{z_{2}}$
d) None of these
15. If the equation $2 x^{2}-7 x+1=0$ and $a x^{2}+b x+2=0$ have a common root, then
a) $a=2, b=-7$
b) $a=-\frac{7}{2}, b=1$
c) $a=4, b=-14$
d) None of these
16. The polynomial $x^{3 m}+x^{3 n+1}+x^{3 k+2}$ is exactly divisible by $x^{2}+x+1$ if
a) m, n, k are rational
b) m, n, k are integers
c) m, n, k are positive integers
d) None of these
17. If $a, b, c \neq 0$ and belongs to the set $\{0,1,2,3, \ldots, 9\}$,

Then $\log _{10}\left(\frac{a+10 b+10^{2} c}{10^{-4} a+10^{-3} b+10^{-2} c}\right)$ is equal to
a) 1
b) 2
c) 3
d) 4
18. If the roots of the equation $x^{2}+p x+q=0$ are $\tan 30^{\circ}$ and $\tan 15^{\circ}$ respectively, then the value of $2+q-p$ is
a) 3
b) 0
c) 1
d) 2
19. If $z=x-i y$ and $z^{1 / 3}=p+i q$, then $\left(\frac{x}{p}+\frac{y}{q}\right) /\left(p^{2}+q^{2}\right)$ is equal to
a) 1
b) -1
c) 2
d) -2
20. If $\sec \alpha$ and $\operatorname{cosec} \alpha$ are the roots of the equation $x^{2}-p x+q=0$, then
a) $p^{2}=p+2 q$
b) $q^{2}=p+2 q$
c) $p^{2}=q(q+2)$
d) $q^{2}=p(p+2)$

