

CLASS: XIth DATE:

Solutions

SUBJECT: MATHS DPP NO.: 1

1. The modulus of
$$\frac{1-i}{3+i} + \frac{4i}{5}$$
 is

a)
$$\sqrt{5}$$
 unit

b)
$$\frac{\sqrt{11}}{5}$$
 unit

c)
$$\frac{\sqrt{5}}{5}$$
 unit

d)
$$\frac{\sqrt{12}}{5}$$
 unit

2. If
$$\frac{\log x}{a-b} = \frac{\log y}{b-c} = \frac{\log z}{c-a}$$
 then xyz is equal to

c)
$$-1$$

3. The area of the triangle formed by the points representing -z, iz and z - iz in the Argand plane is

a)
$$\frac{1}{2}|z|^2$$

b)
$$|z|^2$$

c)
$$\frac{3}{2}|z|^2$$

d)
$$\frac{1}{4}|z|^2$$

4. If $\frac{(1+i)^2}{2-i} = x + iy$, then x + y is equal to

a)
$$-\frac{2}{5}$$

b)
$$\frac{6}{5}$$

c)
$$\frac{2}{5}$$

d)
$$-\frac{6}{5}$$

5. Let 3 - i and 2 + i be affixes of two points A and B the argand plane and P represents the complex number z = x + iy. Then, the locus of P if |z - 3 + i| = |z - 2 - i| is

- a) Circle on AB as diameter
- b) The line AB
- c) The perpendicular bisector of AB
- d) None of these

6. If $x^2 - 2x\cos\theta + 1 = 0$, then $x^{2n} - 2x^n\cos n\theta + 1$ is equal to

- a) $\cos 2 n \theta$
- b) $\sin 2 n \theta$

d) None of these

7. Given $z = \frac{q+ir}{1+p}$, then $\frac{p+iq}{1+r} = \frac{1+iz}{1-iz}$ if a) $p^2 + q^2 + r^2 = 1$ b) $p^2 + q^2 + r^2 = 2$ c) $p^2 + q^2 - r^2 = 1$ d) None of these

a)
$$p^2 + q^2 + r^2 = 1$$

b)
$$p^2 + q^2 + r^2 = 2$$

c)
$$p^2 + q^2 - r^2 = 1$$

8. The expression $(1+i)^{n_1} + (1+i^3)^{n_2}$ is real iff

a)
$$n_1 = -n_2$$

b)
$$n_1 = 4r + (-1)^r n_2$$
 c) $n_1 = 2r + (-1)^r n_2$ d) None of these

c)
$$n_1 = 2r + (-1)^r n_2$$

9. If p,q,r are positive and are in AP, then roots of the quadratic equation $px^2 + qx + r = 0$ are complex for

a)
$$\left| \frac{r}{n} - 7 \right| \ge 4\sqrt{3}$$
 b) $\left| \frac{p}{r} - 7 \right| < 4\sqrt{3}$ c) All p and r

b)
$$\left| \frac{p}{r} - 7 \right| < 4\sqrt{3}$$

c) All
$$p$$
 and n

d) No
$$p$$
 and r

10. If the roots of the equation $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$, $(x \neq -p, x \neq -q, r \neq 0)$ are equal in magnitude but opposite in sign, then $p+q$ is equal to				
орр	a) r	b) 2 <i>r</i>	c) <i>r</i> ²	$d)\frac{1}{r}$
11.		inequation $ 2x - 3 < x $ b) $(1/3, 5)$		$d)(-\infty,1/3)\cup(5,\infty)$
12. In writing an equation of the form $ax^2 + bx + c = 0$; the coefficient of x is written incorrectly and roots are found to be equal. Again in writing the same equation the constant term is written incorrectly and it is found that one root is equal to those of the previous wrong equation while the other is double of it. If α and β be the roots of correct equation, then $(\alpha - \beta)^2$ is equal to a) 5 b) 5 α β c) -4 α β d) -4				
		ression $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ takes b) $a = 1$, $b = -1$		
		+bx + c = 0 has two results $b + bx + c = 0$ has two results $b + bx + c = 0$		
and resp	got the roots 3 and 2. To ectively the correct root a) 3 , -2	ts are b) -3, 2	c) -6 , -1	x^2 correctly as -6 and 1
Whi	$x^2 + bx + c = 0$. Such of the following is true a) E_1 is true, E_2 is true c) E_1 is false E_2 is true		b) E_1 is true, E_2 is false d) E_1 is false, E_2 is false	
17.	If $\omega = \frac{-1 + \sqrt{3}i}{2}$, then (3 a) 16	$+ \omega + 3\omega^2$) ⁴ is b)-16	c) 16ω	d) $16\omega^2$
18.	If $iz^3 + z^2 - z + i = 0$, a) 1	then $ z $ is equal to b) i	c) -1	d) <i>-i</i>
19.	The least value of $ a $ for a) 2	r which tan θ and cot θ ab) 1	are roots of the equation $c) 1/2$	$x^2 + ax + 1 = 0$, is d) 0
	If 1, 2, 3 and 4 are the roots of the equation $x^4 + ax^3 + bx^2 + cx + d = 0$, then $a + 2b + c$ is equal			
to	a) -25	b) 0	c) 10	d)24