

CLASS: XIth DATE:

SUBJECT : MATHS DPP NO. : 9

Topic:- co-ordinate geometry

and an analysis and a second an							
1. One side of length $3a$ of triangle of area a^2 square unit lies on the line $x = a$. Then, one of the lines on which the third vertex lies, is							
	$a) x = -a^2$	$b) x = a^2$	c) $x = -a$	$d)x = \frac{a}{3}$			
2.	In a \triangle <i>ABC</i> , if <i>D</i> is the middle point <i>BC</i> and <i>AD</i> is perpendicular to <i>AC</i> , then $\cos B$ is equal to						
	$a)\frac{2b}{a}$	b) $-\frac{b}{a}$	c) $\frac{b^2 + c^2}{ca}$	$\mathrm{d})\frac{c^2+a^2}{ca}$			
3. is 4	3. The angle of depression of a point situated at a distance of 70 metres from the base of a tower is 45° . The height of the tower is						
	a) 70 m	b) $70\sqrt{2}$ m	c) $\frac{70}{\sqrt{2}}$ m	d)35 m			
4. The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Then, the sides of the triangle are							
	a) 1, 2, 3	b) 2, 3, 4	c) 3, 4, 5	d) 4, 5, 6			
5. 1. a	Consider the follow $\frac{b^2 - c^2}{\sin(B - C)} = 2R$	ing s <mark>tatem</mark> ents :					
2. $a\sin(B-C) + b\sin(C-A) + c\sin(A-B) = 0$ Which of these is/are correct?							
VV 11	a) Only (1)	b) Only (2)	c) Both (1) and (2)	d) None of these			
6.	The four distinct point a) -2	(0, 0), (2, 0),(0, -2) an b) 2c)	d(k, -2) are concyclic 1d)	, if k is equal to 0			
7.	If origin is shifted to $(7 \text{ a}) (-3, 9)$	(3, -4), then point $(4, 5)$: b) $(3, 9)$	shifted to c) (11, 1)	d) None of these			
8.	•	$\tan \frac{A}{2} + \tan \frac{B}{2}$ is equal to b) $2a\cot \frac{A}{2}$	c) $2b\cot\frac{B}{2}$	d) $\tan \frac{c}{2}$			
	-	-	-	-			

	In a \triangle <i>ABC</i> , sides a , b , c are in AP and $\frac{2}{1!9!} + \frac{2}{3!7!} + \frac{1}{5!5!} = \frac{8^a}{(2b)!}$, then the maximum value of $\tan A$ is equal to							
	a) $\frac{1}{2}$	b) $\frac{1}{3}$	c) $\frac{1}{4}$	$d)\frac{1}{4}$				
	10. If the angle of elevation of two towers from the middle point of the line joining their feet be 60° and 30° respectively, then the ratio of their heights is							
	a) 2:1	b) $1:\sqrt{2}$	c) 3:1	d) 1: $\sqrt{3}$				
11.	In a $\triangle ABC$, $\angle C = 60^{\circ}$ then $\frac{1}{a+c} + \frac{1}{b+c}$ is equal to a) $\frac{1}{a+b+c}$ b) $\frac{2}{a+b+c}$ c) $\frac{3}{a+b+c}$ d) None of these							
	a) $\frac{1}{a+b+c}$	b) $\frac{1}{a+b+c}$	c) $\frac{1}{a+b+c}$	d) None of these				
12.	In $\triangle ABC$, if $(a + b + c)(a + b + c)$ a) $\angle B = 60^{\circ}$		c) ∠ <i>C</i> = 60°	$d) \angle A + \angle C = 90^{\circ}$				
13.	If a^2 , b^2 , c^2 are in AP, the a) $\sin A$, $\sin B$, $\sin C$	en which of the following b) tan A,tan B,tan C	g are also in AP? c) cot A,cot B,cot C	d) None of these				
14.	. In a triangle <i>ABC</i> , if $\sin A \sin B = \frac{ab}{c^2}$, then the triangle is							
	a) Equilateral The perimeter of a Δ Ab A is equal to	b) Isosceles BC is 6 times the arithme	c) Right angled etic mean of the sine rat	d) Obtuse angled ios of its angles. If $a = 1$,				
	a) $\frac{\pi}{6}$	$b)\frac{\pi}{3}$	c) $\frac{\pi}{2}$	$d)\frac{2\pi}{3}$				
16.	The centriod of the tria a) (5, 6)	ngle ABC , where $A \equiv (2, 6)$	(3), $B \equiv (8, 10)$ and $C \equiv c$ (6, 6)	(5, 5) is d) (15, 18)				
17. The angle of elevation of the top of the tower observed from each of the tree point A , B , C on the ground forming a triangle is the same angle α . If R is the circumaradias of the triangle ABC , then the height of the tower is								
ciici	a) $R\sin\alpha$	b) $R\cos\alpha$	c) Rcot α	d) Rtan α				
18. The angle of elevation of the top of a hill from a point is α . After walking b metres towards the top up a slope inclined at an angle β to the horizon, the angle of elevation of the top becomes γ . Then, the height of the hill is								
	-	b) $\frac{b \sin \alpha \sin(\gamma - \alpha)}{\sin(\gamma - \beta)}$	c) $\frac{b \sin (\gamma - \beta)}{\sin(\gamma - \alpha)}$	$d)\frac{\sin(\gamma-\beta)}{b\sin\alpha\sin(\gamma-\alpha)}$				
19.	The area of the \triangle <i>ABC</i> , in which $a = 1$, $b = 2$, $\angle C = 60^\circ$, is							
	a) 4 sq unit	b) $\frac{1}{2}$ sq unit	c) $\frac{\sqrt{3}}{2}$ sq unit	d) $\sqrt{3}$ sq units				
20. if	If t_1 , t_2 and t_3 are distinct points $(t_1, 2at_1 + at_1^3)$, $(t_2, 2at_2 + at_2^3)$ and $t_3, 2at_3 + at_3^3)$ are collinear,							
	a) $t_1t_2t_3 = 1$	b) $t_1 + t_2 + t_3 = t_1 t_2 t_3$	c) $t_1 + t_2 + t_3 = 0$	d) $t_1 + t_2 + t_3 = -1$				