CLASS : XIth
SUBJECT : MATHS
DATE :

TOpic :- CO-ORDINATE GEOMETRY

1. One side of length $3 a$ of triangle of area a^{2} square unit lies on the line $x=a$. Then, one of the lines on which the third vertex lies, is
a) $x=-a^{2}$
b) $x=a^{2}$
c) $x=-a$
d) $x=\frac{a}{3}$
2. In a $\triangle A B C$, if D is the middle point $B C$ and $A D$ is perpendicular to $A C$, then $\cos B$ is equal to
a) $\frac{2 b}{a}$
b) $-\frac{b}{a}$
c) $\frac{b^{2}+c^{2}}{c a}$
d) $\frac{c^{2}+a^{2}}{c a}$
3. The angle of depression of a point situated at a distance of 70 metres from the base of a tower is 45°. The height of the tower is
a) 70 m
b) $70 \sqrt{2} \mathrm{~m}$
c) $\frac{70}{\sqrt{2}} \mathrm{~m}$
d) 35 m
4. The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Then, the sides of the triangle are
a) 1, 2, 3
b) $2,3,4$
c) $3,4,5$
d) $4,5,6$
5. Consider the following statements :
6. $\frac{b^{2}-c^{2}}{a \sin (B-C)}=2 R$
7. $a \sin (B-C)+b \sin (C-A)+c \sin (A-B)=0$

Which of these is/are correct?
a) Only (1)
b) Only (2)
c) Both (1) and (2)
d) None of these
6. The four distinct point $(0,0),(2,0),(0,-2)$ and $(k,-2)$ are concyclic, if k is equal to
a) -2
b) 2 c)
1d)
0
7. If origin is shifted to $(7,-4)$, then point $(4,5)$ shifted to
a) $(-3,9)$
b) $(3,9)$
c) $(11,1)$
d) None of these
8. In $\triangle A B C,(a+b+c)\left(\tan \frac{A}{2}+\tan \frac{B}{2}\right)$ is equal to
a) $2 c \cot \frac{C}{2}$
b) $2 a \cot \frac{A}{2}$
c) $2 b \cot \frac{B}{2}$
d) $\tan \frac{C}{2}$
9. In a $\triangle A B C$, sides a, b, c are in AP and $\frac{2}{1!9!}+\frac{2}{3!7!}+\frac{1}{5!5!}=\frac{8^{a}}{(2 b)!}$, then the maximum value of $\tan A$ $\tan B$ is equal to
a) $\frac{1}{2}$
b) $\frac{1}{3}$
c) $\frac{1}{4}$
d) $\frac{1}{4}$
10. If the angle of elevation of two towers from the middle point of the line joining their feet be 60° and 30° respectively, then the ratio of their heights is
a) $2: 1$
b) $1: \sqrt{2}$
c) $3: 1$
d) $1: \sqrt{3}$
11. In a $\triangle A B C, \angle C=60^{\circ}$ then $\frac{1}{a+c}+\frac{1}{b+c}$ is equal to
a) $\frac{1}{a+b+c}$
b) $\frac{2}{a+b+c}$
c) $\frac{3}{a+b+c}$
d) None of these
12. In $\triangle A B C$, if $(a+b+c)(a-b+c)=3 a c$, then
a) $\angle B=60^{\circ}$
b) $\angle B=30^{\circ}$
c) $\angle C=60^{\circ}$
d) $\angle A+\angle C=90^{\circ}$
13. If a^{2}, b^{2}, c^{2} are in AP, then which of the following are also in AP?
a) $\sin A, \sin B, \sin C$
b) $\tan A, \tan B, \tan C$
c) $\cot A, \cot B, \cot C$
d) None of these
14. In a triangle $A B C$, if $\sin A \sin B=\frac{a b}{c^{2}}$, then the triangle is
a) Equilateral
b) Isosceles
c) Right angled
d) Obtuse angled
15. The perimeter of a $\triangle A B C$ is 6 times the arithmetic mean of the sine ratios of its angles. If $a=1$, then A is equal to
a) $\frac{\pi}{6}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{2}$
d) $\frac{2 \pi}{3}$
16. The centriod of the triangle $A B C$, where $A \equiv(2,3), B \equiv(8,10)$ and $C \equiv(5,5)$ is
a) $(5,6)$
b) $(6,5)$
c) $(6,6)$
d) $(15,18)$
17. The angle of elevation of the top of the tower observed from each of the tree point A, B, C on the ground forming a triangle is the same angle α. If R is the circumaradias of the triangle $A B C$, then the height of the tower is
a) $R \sin \alpha$
b) $R \cos \alpha$
c) $R \cot \alpha$
d) $R \tan \alpha$
18. The angle of elevation of the top of a hill from a point is α. After walking b metres towards the top up a slope inclined at an angle β to the horizon, the angle of elevation of the top becomes γ. Then, the height of the hill is
a) $\frac{b \sin \alpha \sin (\gamma-\beta)}{\sin (\gamma-\alpha)}$
b) $\frac{b \sin \alpha \sin (\gamma-\alpha)}{\sin (\gamma-\beta)}$
c) $\frac{b \sin (\gamma-\beta)}{\sin (\gamma-\alpha)}$
d) $\frac{\sin (\gamma-\beta)}{b \sin \alpha \sin (\gamma-\alpha)}$
19. The area of the $\triangle A B C$, in which $a=1, b=2, \angle C=60^{\circ}$, is
a) 4 sq unit
b) $\frac{1}{2}$ sq unit
c) $\frac{\sqrt{3}}{2}$ sq unit
d) $\sqrt{3}$ sq units
20. If t_{1}, t_{2} and t_{3} are distinct points $\left(t_{1}, 2 a t_{1}+a t_{1}^{3}\right),\left(t_{2}, 2 a t_{2}+a t_{2}^{3}\right)$ and $\left.t_{3}, 2 a t_{3}+a t_{3}^{3}\right)$ are collinear, if
a) $t_{1} t_{2} t_{3}=1$
b) $t_{1}+t_{2}+t_{3}=t_{1} t_{2} t_{3}$
c) $t_{1}+t_{2}+t_{3}=0$
d) $t_{1}+t_{2}+t_{3}=-1$

