

CLASS: XIth DATE:

SUBJECT : MATHS DPP NO. : 8

Topic:- co-ordinate geometry

1. the	In radius of a circle which is inscribed in a isosceles triangle one of whose angle is $2\pi/3$, is $\sqrt{3}$, n area of triangle is				
	_	b) $12 - 7\sqrt{3}$	c) $12 + 7\sqrt{3}$	d) None of these	
2. ban	A triangular park is enclosed on two sides by a fence and on the third side by a straight river k. The two sides having fence are of same lengthx. The maximum area enclosed by the park is				
	a) $\sqrt{\frac{x^3}{8}}$	$b)\frac{1}{2}x^2$	c) πx^2	$d)\frac{3}{2}x^2$	
3.	In a $\triangle ABC$, if $\tan \frac{A}{2} = \frac{5}{6}$, $\tan \frac{C}{2} = \frac{2}{5}$, then				
	a) <i>a, b, c</i> are in AP	b) <i>a</i> , <i>b</i> , <i>c</i> are in GP	c) b.a.c are in AP	d) <i>a, b, c</i> are in AP	
4. is	The vertices P , Q , R of a triangle are $(2, 1)$, $(5, 2)$ and $(3, 4)$ respectively. Then, the circumcentre				
	a) $\left(\frac{13}{4}, -\frac{9}{4}\right)$	b) $\left(-\frac{13}{4}, \frac{9}{4}\right)$	c) $\left(-\frac{13}{4}, -\frac{9}{4}\right)$	$d)\left(\frac{13}{4}, \frac{9}{4}\right)$	
5.	In a \triangle ABC, $(a + b + c)$ a) $k < 0$		c) $0 < k < 4$	d) $k > 4$	
6. is	If A (6, $-$ 3), B ($-$ 3, 5), C (4, $-$ 2), P (α , β), then the ratio of the areas of the triangles PBC , ABC				
	a) $ \alpha + \beta $ b)	$ \alpha - \beta c$	$ \alpha + \beta + 2 d$	$ \alpha + \beta - 2 $	

7. ABC is a triangular park with AB = AC = 100 m. A clock tower is situated at the mid point of BC. The angles of elevation of the top of the tower at A and B are $\cot^{-1} 3.2$ and $\csc^{-1} 2.6$ respectively. The height of the tower is

- a) 50 m
- b) 25 m
- c) 40 m

d) None of these

8. In a \triangle ABC, $a \cot A + b \cot B + c \cot C$ is equal to

- a) r + R
- b) r R
- c) 2(r + R)

d) 2(r-R)

9. If (1,a), (2,b), and (3,c); $a,b,c \in R$ are the vertices of a triangle, its centroid can

- a) Not be on x-axis
- b) Not be on y-axis
- c) Be on (0, 0)

d) None of these

10. The pair of lines $\sqrt{3}x^2 - 4xy + \sqrt{3}y^2 = 0$ are rotated about the origin by $\pi/6$ in the anticlockwise sense. The equation of the pair in the new position is a) $\sqrt{3}y^2 - xy = 0$ b) $\sqrt{3}x^2 - xy = 0$ c) $x^2 - y^2 = 0$ d) $\sqrt{3}x^2 + xy = 0$							
11.	In triangle <i>ABC</i> , $a = 2$, a) 30°	$b = 3$ and $\sin A = \frac{2}{3}$ then b) 60°	B is equal to $c) 90^{\circ}$	d) 120°			
12.	2. If the sides of a right angle triangle form an AP, the 'sin' of the acute angles are						
	a) $\left(\frac{3}{5}, \frac{4}{5}\right)$	b) $\left(\sqrt{3}, \frac{1}{\sqrt{3}}\right)$	c) $\left(\sqrt{\frac{\sqrt{5}-1}{2}}, \sqrt{\frac{\sqrt{5}-1}{2}}\right)$	$d)\left(\sqrt{\frac{\sqrt{3}-1}{2}},\sqrt{\frac{\sqrt{3}-1}{2}}\right)$			
13. In a \triangle ABC, $2a^2 + 4b^2 + c^2 = 4ab + 2ac$, then $\cos B$ is equal to							
	a) 0	b) $\frac{1}{8}$	c) $\frac{3}{8}$	$d)\frac{7}{8}$			
14. The line joining $A(b\cos\alpha, b\sin\alpha)$ and $B(a\cos\beta, a\sin\beta)$ is produced to the point $M(x,y)$ so that $AM:MB = b:a$, then $x\cos\left(\frac{\alpha+\beta}{2}\right) + y\sin\left(\frac{\alpha+\beta}{2}\right)$ is							
	a) -1	b) 0	c) 1	$d)a^2 + b^2$			
15. A house of height 100 m subtends a right angle at the window of an opposite house. If the height of the window be 64m, then the distance between the two houses is a) 48 m b) 36 m c) 54 m d) 72 m							
16. A vertical tower stands on a declivity which is inclined at 15° to the horizon. From the foot of the tower a man ascends the declivity for 80 ft and them, finds that the tower subtends an angle of 30°. The height of tower is a) $20(\sqrt{6} - \sqrt{2})$ ft b) $40(\sqrt{6} - \sqrt{2})$ ft c) $40(\sqrt{6} + \sqrt{2})$ ft d) None of these							
17.		two opposite vertices of b) $(3, -1)$, $(0, 0)$		o vertices are d) (2, 2), (1, 1)			
18. The points (1, 3) and (5, 1) are two opposite vertices of a rectangle. The other two vertices lie							
on t	he line $y = 2x + c$, are a) (2, 0) and (4, 4) d) (-2, 0) and (4, 4)	b) (2, 0) and (– 4, – 4) c)	(2, 0) and (– 4, 4)			
19.	If in a \triangle <i>ABC</i> , $r_3 = r_1 +$ a) 120°	$r_2 + r$, then $\angle A + \angle B$ is ϵ b) 100°	equal to c) 90°	d)80°			
20. In a triangle <i>ABC</i> , if $a = 3$, $b = 4$, $c = 5$, then the distance between its incentre and							
	umcentre is $a) \frac{1}{2}$	b) $\frac{\sqrt{3}}{2}$	c) $\frac{3}{2}$	$d)\frac{\sqrt{5}}{2}$			