CLASS : XIth
SUBJECT : MATHS
DATE :

Topic :- CO-ORDINATE GEOMETRY

1. In radius of a circle which is inscribed in a isosceles triangle one of whose angle is $2 \pi / 3$, is $\sqrt{3}$, then area of triangle is
a) $4 \sqrt{3}$
b) $12-7 \sqrt{3}$
c) $12+7 \sqrt{3}$
d) None of these
2. A triangular park is enclosed on two sides by a fence and on the third side by a straight river bank. The two sides having fence are of same length x. The maximum area enclosed by the park is
a) $\sqrt{\frac{x^{3}}{8}}$
b) $\frac{1}{2} x^{2}$
c) πx^{2}
d) $\frac{3}{2} x^{2}$
3. In a $\triangle A B C$, if $\tan \frac{A}{2}=\frac{5}{6}, \tan \frac{C}{2}=\frac{2}{5}$, then
a) a, b, c are in AP
b) a, b, c are in GP
c) b.a.c are in AP
d) a, b, c are in AP
4. The vertices P, Q, R of a triangle are $(2,1),(5,2)$ and $(3,4)$ respectively. Then, the circumcentre is
a) $\left(\frac{13}{4},-\frac{9}{4}\right)$
b) $\left(-\frac{13}{4}, \frac{9}{4}\right)$
c) $\left(-\frac{13}{4},-\frac{9}{4}\right)$
d) $\left(\frac{13}{4}, \frac{9}{4}\right)$
5. In a $\triangle A B C,(a+b+c)(b+c-a)=k b c$, if
a) $k<0$
b) $k>6$
c) $0<k<4$
d) $k>4$
6. If $A(6,-3), B(-3,5), C(4,-2), P(\alpha, \beta)$, then the ratio of the areas of the triangles $P B C, A B C$ is
a) $|\alpha+\beta| b)$
$|\alpha-\beta| c)$
$|\alpha+\beta+2| d)$
$|\alpha+\beta-2|$
7. $A B C$ is a triangular park with $A B=A C=100 \mathrm{~m}$. A clock tower is situated at the mid point of $B C$
 The height of the tower is
a) 50 m
b) 25 m
c) 40 m
d) None of these
8. In a $\triangle A B C, a \cot A+b \cot B+c \cot C$ is equal to
a) $r+R$
b) $r-R$
c) $2(r+R)$
d) $2(r-R)$
9. If $(1, a),(2, b)$, and $(3, c) ; a, b, c \in R$ are the vertices of a triangle, its centroid can
a) Not be on x-axis
b) Not be on y-axis
c) Be on (0,0)
d) None of these
10. The pair of lines $\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0$ are rotated about the origin by $\pi / 6$ in the anticlockwise sense. The equation of the pair in the new position is
a) $\sqrt{3} y^{2}-x y=0$
b) $\sqrt{3} x^{2}-x y=0$
c) $x^{2}-y^{2}=0$
d) $\sqrt{3} x^{2}+x y=0$
11. In triangle $A B C, a=2, b=3$ and $\sin A=\frac{2}{3}$ then B is equal to
a) 30°
b) 60°
c) 90°
d) 120°
12. If the sides of a right angle triangle form an AP, the 'sin' of the acute angles are
a) $\left(\frac{3}{5}, \frac{4}{5}\right)$
b) $\left(\sqrt{3}, \frac{1}{\sqrt{3}}\right)$
c) $\left(\sqrt{\frac{\sqrt{5}-1}{2}}, \sqrt{\frac{\sqrt{5}-1}{2}}\right)$
d) $\left(\sqrt{\frac{\sqrt{3}-1}{2}}, \sqrt{\frac{\sqrt{3}-1}{2}}\right)$
13. In a $\triangle A B C, 2 a^{2}+4 b^{2}+c^{2}=4 a b+2 a c$, then $\cos B$ is equal to
a) 0
b) $\frac{1}{8}$
c) $\frac{3}{8}$
d) $\frac{7}{8}$
14. The line joining $A(b \cos \alpha, b \sin \alpha)$ and $B(a \cos \beta, a \sin \beta)$ is produced to the point $M(x, y)$ so that $A M: M B=b: a$, then $x \cos \left(\frac{\alpha+\beta}{2}\right)+y \sin \left(\frac{\alpha+\beta}{2}\right)$ is
a) -1
b) 0
c) 1
d) $a^{2}+b^{2}$
15. A house of height 100 m subtends a right angle at the window of an opposite house. If the height of the window be 64 m , then the distance between the two houses is
a) 48 m
b) 36 m
c) 54 m
d) 72 m
16. A vertical tower stands on a declivity which is inclined at 15° to the horizon. From the foot of the tower a man ascends the declivity for 80 ft and them, finds that the tower subtends an angle of 30°. The height of tower is
a) $20(\sqrt{6}-\sqrt{2}) \mathrm{ft}$
b) $40(\sqrt{6}-\sqrt{2}) \mathrm{ft}$
c) $40(\sqrt{6}+\sqrt{2}) \mathrm{ft}$
d) None of these
17. $(0,-1)$ And $(0,3)$ are two opposite vertices of a square. The other two vertices are
a) $(0,1),(0,-3)$
b) $(3,-1),(0,0)$
c) $(2,1),(-2,1)$
d) $(2,2),(1,1)$
18. The points $(1,3)$ and $(5,1)$ are two opposite vertices of a rectangle. The other two vertices lie on the line $y=2 x+c$, are
a) $(2,0)$ and $(4,4)$
b) $(2,0)$ and $(-4,-4)$ c)
$(2,0)$ and $(-4,4)$
d) $(-2,0)$ and $(4,4)$
19. If in a $\triangle A B C, r_{3}=r_{1}+r_{2}+r$, then $\angle A+\angle B$ is equal to
a) 120°
b) 100°
c) 90°
d) 80°
20. In a triangle $A B C$, if $a=3, b=4, c=5$, then the distance between its incentre and circumcentre is
a) $\frac{1}{2}$
b) $\frac{\sqrt{3}}{2}$
c) $\frac{3}{2}$
d) $\frac{\sqrt{5}}{2}$
