CLASS : XIth

SUBJECT : MATHS
 DPP NO. : 7

Topic :- CO-ORDINATE GEOMETRY

1. Given points are $A(0,4)$ and $B(0,-4)$, the locus of $P(x, y)$ such that $|A P-B P|=6$, is
a) $9 x^{2}-7 y^{2}+63=0$
b) $9 x^{2}+7 y^{2}-63=0$
c) $9 x^{2}+7 y^{2}+63=0$
d) None of these
2. The angle of elevation of the top of a tower from a point A due South of the tower is α and from a point B due East of the tower is β. If $A B=d$, then the height of the tower is
a) $\frac{d}{\sqrt{\tan ^{2} \alpha-\tan ^{2} \beta}}$
b) $\frac{d}{\sqrt{\tan ^{2} \alpha+\tan ^{2} \beta}}$
c) $\frac{d}{\sqrt{\cot ^{2} \alpha+\cot ^{2} \beta}}$
d) $\frac{d}{\sqrt{\cot ^{2} \alpha-\cot ^{2} \beta}}$
3. Let P be the point $(1,0)$ and Q be the point on $y^{2}=8 x$. The locus of mid point of $P Q$ is
a) $x^{2}-4 y+2=0$
b) $x^{2}+4 y+2=0$
c) $y^{2}+4 x+2=0$
d) $y^{2}-4 x+2=0$
4. Let $A(k, 2)$ and $B(3,5)$ are points. The point (t, t) divide $\overline{A B}$ from A 's side in the ratio of k, then
$k=\ldots, k \in R-\{0,-1\}$
a) $-4 b$)
$-2 \mathrm{c})$
$4 \mathrm{~d})$
2
5. If a, b, c the sides of a $\triangle A B C$ are in AP and a is the smallest side, then $\cos A$ equals
a) $\frac{3 c-4 b}{2 c}$
b) $\frac{3 c-4 b}{2 b}$
c) $\frac{4 c-3 b}{2 c}$
d) None of these
6. Area of the triangle formed by the lines $y=2 x, y=3 x$ and $y=5$ is equal to (in square unit)
a) $\frac{25}{6}$
b) $\frac{25}{12}$
c) $\frac{5}{6}$
d) $\frac{17}{12}$
7. The angles of depression of the top and the foot of a chimney as seen from the top of a second chimney, which is 150 m high and standing on the same level as the first are θ and ϕ respectively, then the distance between their tops when $\tan \theta=\frac{4}{3}$ and $\tan \phi=\frac{5}{2}$, is
a) $\frac{150}{\sqrt{3}} \mathrm{~m}$
b) $100 \sqrt{3} \mathrm{~m}$
c) 150 m
d) 100 m
8. If one side of a triangle is double the other and the angles opposite to these sides differ by 60°, then the triangle is
a) Obtuse angled
b) Acute angled
c) Isosceles
d) Right angled
9. If the three points $(3 q, 0),(0,3 p)$ and $(1,1)$ are collinear then which one is true?
a) $\frac{1}{p}+\frac{1}{q}=0$
b) $\frac{1}{p}+\frac{1}{q}=1$
c) $\frac{1}{p}+\frac{1}{q}=3$
d) $\frac{1}{p}+\frac{3}{q}=1$
10. If in a $\triangle A B C, a=15, b=36, c=39$, then $\sin \frac{C}{2}$ is equal to
a) $\frac{\sqrt{3}}{2}$
b) $\frac{1}{2}$
c) $\frac{1}{\sqrt{2}}$
d) $-\frac{1}{\sqrt{2}}$
11. In a $\triangle A B C$, let $\angle C=\frac{\pi}{2}$, if r is the inradius and R is the circumradius of the $\triangle A B C$, then $2(r+R)$ equals
a) $c+a$
b) $a+b+c$
c) $a+b$
d) $b+c$
12. From the top of a light house 60 m high with its base at the sea level the angle of depression of a boat is 15°. The distance of the boat from the foot of light house is
a) $\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right) 60 \mathrm{~m}$
b) $\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right) 60 \mathrm{~m}$
c) $\frac{\sqrt{3}+1}{\sqrt{3}-1} \mathrm{~m}$
d) None of these
13. If $\cos ^{2} A+\cos ^{2} C=\sin ^{2} B$, then $\triangle A B C$ is
a) Equilateral
b) Right angled
c) Isosceles
d) None of these
14. The sides of triangle are in the ratio $1: \sqrt{3}: 2$, then the angles of the triangle are in ratio
a) $1: 3: 5$
b) $2: 3: 1$
c) $3: 2: 1$
d) $1: 2: 3$
15. A tower stands at the top of a hill whose height is 3 times the height of the tower. The tower is found to subtend at a point 3 km away on the horizontal through the foot of the hill, an angle θ, where $\tan \theta=\frac{1}{9}$. The height of the tower is
a) 12
b) 3
c) $\frac{9 \pm \sqrt{33}}{8}$
d) None of these
16. Angles A, B and C of a $\triangle A B C$ are in AP. If $\frac{b}{c}=\frac{\sqrt{3}}{\sqrt{2}}$, then angle A is equal to
a) $\frac{\pi}{6}$
b) $\frac{\pi}{4}$
c) $\frac{5 \pi}{12}$
d) $\frac{\pi}{2}$
17. The angle of depression of a boat in a river is 30° from the top of a tower, 87 m high and the speed of the boat is $5.8 \mathrm{~km} / \mathrm{h}$. The time taken by the boat to reach at the base of the tower is
a) 9 min
b) $\frac{9 \sqrt{3}}{10} \mathrm{~min}$
c) 25 min
d) 15 min
18. If the centroid of the triangle formed by the points $(a, b),(b, c)$ and (c, a) is at the origin, then a^{3} $+b^{3}+c^{3}=$
a) 0
b) $a b c$
c) $3 a b c$
d) $-3 a b c$
19. The sides of a $\triangle A B C$ are $B C=5, C A=4$ and $A B=3$. If A is at the origin and the bisector of the internal angle A meets $B C$ in $D(12 / 7,12 / 7)$, then the coordinates of the incentre, are
a) $(2,2)$
b) $(2,3)$
c) $(3,2)$
d) $(1,1)$
20. If a, b and c are the sides of a triangle such that $a^{4}+b^{4}+c^{4}=2 c^{2}\left(a^{2}+b^{2}\right)$, then the angles opposite to the side C is
a) 45° or 90°
b) 30° or 135°
c) 45° or 135°
d) 60° or 120°
