CLASS : XIth
SUBJECT : MATHS
DATE :
DPP NO. : 5

Topic :- CO-ORDINATE GEOMETRY

1. If a $\triangle A B C$, if $a^{4}+b^{4}+c^{4}=2 c^{2}\left(a^{2}+b^{2}\right)$, then $\angle C$ is equal to
a) 60°
b) 135°
c) 90°
d) 75°
2. Given the points $A(0,4)$ and $B(0,-4)$, then the equation of the locus of the point $P(x, y)$ such that, $|A P-B P|=6$, is
a) $\frac{x^{2}}{7}+\frac{y^{2}}{9}=1$
b) $\frac{x^{2}}{9}+\frac{y^{2}}{7}=1$
c) $\frac{x^{2}}{7}-\frac{y^{2}}{9}=1$
d) $\frac{y^{2}}{9}-\frac{x^{2}}{7}=1$
3. If in $\triangle A B C, \sin \frac{A}{2} \sin \frac{C}{2}=\sin \frac{B}{2}$ and $2 s$ is the perimeter of the triangle, then s is
a) $2 b$
b) b
c) $3 b$
d) $4 b$
4. The angle of depression of a ship from the top of a tower 30 m high is 60°. Then the distance of ship from the base of tower is
a) 30 m
b) $30 \sqrt{3} \mathrm{~m}$
c) $10 \sqrt{3} \mathrm{~m}$
d) 10 m
5. At a distance $2 h \mathrm{~m}$ from the foot of a tower of height $h \mathrm{~m}$ the top of the tower and a pole at the top of the tower subtend equal angles. Height of the pole should be
a) $\frac{5 h}{3} \mathrm{~m}$
b) $\frac{4 h}{3} \mathrm{~m}$
c) $\frac{7 h}{5} \mathrm{~m}$
d) $\frac{3 h}{2} \mathrm{~m}$
6. From the tower 60 m high angles of depression of the top and bottom of a house are α and β respectively. If the height of the house is $\frac{60 \sin (\beta-\alpha)}{x}$, then x is equal to
a) $\sin \alpha \sin \beta$
b) $\cos \alpha \cos \beta$
c) $\sin \alpha \cos \beta$
d) $\cos \alpha \sin \beta$
7. In a triangle, the lengths of the two larger sides are 10 cm and 9 cm respectively. If the angles of the triangle are in AP, then the length of the third side in cm can be
a) $5-\sqrt{6}$ only
b) $5+\sqrt{6}$ only
c) $5-\sqrt{6}$ or $5+\sqrt{6}$
d) Neither $5-\sqrt{6}$ nor $5+\sqrt{6}$
8. In $\triangle A B C$, ifsin $\frac{A}{2}, \sin ^{2} \frac{B}{2}, \sin ^{2} \frac{C}{2}$ be in HP. Then, a, b, c will be in
a) AP
b) GP
c) HP
d) None of these
9. The angles of elevation of the top of a tower at the top and the foot of a pole of height 10 m are 30° and 60° respectively. The height of the tower is
a) 10 m
b) 15 m
c) 20 m
d) None of these
10. If the points $(1,1),(-1,-1),(-\sqrt{3}, \sqrt{3})$ are the vertices of a triangle, then this triangle is
a) Right angled
b) Isosceles
c) Equilateral
d) None of these
11. The vertices of a family of triangles have integer coordinates. If two of the vertices of all the triangles are $(0,0)$ and $(6,8)$, then the least value of areas of the triangles is
a) 1
b) $\frac{3}{2}$
c) 2
d) $\frac{5}{2}$
12. In a $\triangle A B C$, $\left(\cot \frac{A}{2}+\cot \frac{B}{2}\right)\left(a \sin ^{2} \frac{B}{2}+b \sin ^{2} \frac{A}{2}\right)$ is equal to
a) $\cot C$
b) $c \cot C$
c) $\cot \frac{C}{2}$
d) $c \cot \frac{C}{2}$
13. The intercepts on the straight line $y=m x$ by the line $y=2$ and $y=6$ is less than 5 , then m belongs to
a) $]-\frac{4}{3}, \frac{4}{3}[$
b) $] \frac{4}{3}, \frac{3}{8}[$
c) $]-\infty,-\frac{4}{3}[U] \frac{4}{3}, \infty[$
d) $] \frac{4}{3}, \infty[$
14. In $\triangle A B C,(b-c) \sin A+(c-a) \sin B+(a-b) \sin C$ is equal to
a) $a b+b c+c a$
b) $a^{2}+b^{2}+c^{2}$
c) 0
d) None of these
15. The inradius of the triangle whose sides are $3,5,6$ is
a) $\sqrt{\frac{8}{7}}$
b) $\sqrt{8}$
c) $\sqrt{7}$
d) $\sqrt{\frac{7}{8}}$
16. In a $\triangle A B C$, if the sides are $a=3, b=5$ and $c=4$, then $\sin \frac{B}{2}+\cos \frac{B}{2}$ is equal to
a) $\sqrt{2}$
b) $\frac{\sqrt{3}+1}{2}$
c) $\frac{\sqrt{3}-1}{2}$
d) 1
17. The elevation of an object on a hill is observed from a certain point in the horizontal plane through its base, to be 30°. After walking 120 m towards it on level ground the elevation is found to be 60°. Then the height of the object (in metres) is
a) 120
b) $60 \sqrt{3}$
c) $120 \sqrt{3}$
d) 60
18. If the area of the triangle with vertices $(x, 0),(1,1)$ and $(0,2)$ is 4 sq unit, then the value of x is
a) -2
b) -4
c) -6
d) 8
19. At a distance 12 metres from the foot A of a tower $A B$ of height 5 metres, a flagstaff $B C$ on top of $A B$ and the tower subtend the same angle. The, the height of flagstaff is
a) $\frac{1440}{119}$ metres
b) $\frac{475}{119}$ metres
c) $\frac{845}{119}$ metres
d) None of these
20. A tower 50 m high, stands on top of a mount, from a point on the ground the angles of elevation of the top and bottom of the tower are found to be 75° and 60° respectively. the height of the mount is
a) 25 m
b) $25(\sqrt{3}-1) \mathrm{m}$
c) $25 \sqrt{3} \mathrm{~m}$
d) $25(\sqrt{3}+1) \mathrm{m}$
