CLASS : XIth
SUBJECT : MATHS
DATE :
DPP NO. : 4

Topic :- CO-ORDINATE GEOMETRY

1. In a $\triangle A B C, 2 a c \sin \frac{A-B+C}{2}$ is equal to
a) $a^{2}+b^{2}-c^{2}$
b) $c^{2}+a^{2}-b^{2}$
c) $b^{2}-a^{2}-c^{2}$
d) $c^{2}-a^{2}-b^{2}$
2. If $P=(1,0), Q=(-1,0)$ and $R=(2,0)$ are three given points, then the locus of the point S (x, y) satisfying the relation $S Q^{2}++S R^{2}=2 S P^{2}$ is
a) A straight line parallel to x-axis
b) A circle through the origin
c) A circle with centre at the origin
d) A straight line parallel to y-axis
3. If orthocenter and circumcentre of a triangle are respectively $(1,1)$ and $(3,2)$, then the coordinates of its centroid are
a) $\left(\frac{7}{3}, \frac{5}{3}\right)$
b) $\left(\frac{5}{3}, \frac{7}{3}\right)$
c) $(7,5)$
d) None of these
4. The locus of the point of intersection of the lines $x \cot \theta+y \operatorname{cosec} \theta=2$ and $x \operatorname{cosec} \theta+y \cot \theta$ $=6$ is
a) A straight line
b) Circle
c) A hyperbola
d) An ellipse
5. In $\triangle A B C$, ifcot $A, \cot B, \cot C$ be in AP, then a^{2}, b^{2}, c^{2} are in
a) HP
b) GP
c) AP
d) None of these
6. The angels of elevation of the cloud at a point 2500 m high from the lake is 15° and the angle of depression of its reflection to the lake is 45°. Then the height of cloud from the foot of lake is
a) $2500 \sqrt{3} \mathrm{mb})$
2500 mc)
$500 \sqrt{3} \mathrm{md})$
None of these
7. ABC is a triangular park with $A B=A C=100 \mathrm{~m}$. A clock tower is situated at the mid point of $B C$. The angle of elevation, if the top of the toper at A and B are $\cot ^{-1} 3.2$ and $\operatorname{cosec}^{-1} 2.6$ respectively. The height of the tower is
a) 16 m
b) 25 m
c) 50 m
d) None of these
8. In $\triangle A B C, b=\sqrt{3}, c=1$ and $\angle A=30^{\circ}$, then the largest angle of the triangle is
a) 60°
b) 135°
c) 90°
d) 120°
9. In an equilateral triangle, $R: r: r_{1}$ is equal to
a) $1: 1: 1$
b) $1: 2: 3$
c) $2: 1: 3$
d) $3: 2: 4$
10. In a triangle, if $r_{1}=2 r_{2}=3 r_{3}$, then $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}$ is equal to
a) $\frac{75}{60}$
b) $\frac{155}{60}$
c) $\frac{176}{60}$
d) $\frac{191}{60}$
11. In a triangle $A B C, a: b: c=4: 5: 6$. The ratio of the radius of the circumcircle to that of the incircle is
a) $\frac{15}{4}$
b) $\frac{11}{5}$
c) $\frac{16}{7}$
d) $\frac{16}{3}$
12. An aeroplane flying with uniform speed horizontally one kilometer above the ground is observed at an elevation of 60°. After 10 s , if the elevation is observed to be 30°, then the speed of the plane (in km/h) is
a) $\frac{240}{\sqrt{3}}$
b) $200 \sqrt{3}$
c) $240 \sqrt{3}$
d) $\frac{120}{\sqrt{3}}$
13. The angle of elevation of the top of a tower standing on a horizontal plane from a point A is α. After walking a distance a towards the foot of the tower the angle of elevation is found to be β. The height of the tower is
a) $\frac{a \sin \alpha \sin \beta}{\sin (\beta-\alpha)}$
b) $\frac{a \sin \alpha \sin \beta}{\sin (\alpha-\beta)}$
c) $\frac{a \sin (\beta-\alpha)}{\sin \alpha \sin \beta}$
d) $\frac{a \sin (\alpha-\beta)}{\sin \alpha \sin \beta}$
14. If the vertices of a triangle have integral coordinates, the triangle cannot be
a) An equilateral triangle
b) A right angled triangle
c) An isosceles triangle
d) None of the above
15. In a $\triangle A B C$, among the following which one is true?
a) $(b+c) \cos \frac{A}{2}=a \sin \left(\frac{B+C}{2}\right)$
b) $(b+c) \cos \left(\frac{B+C}{2}\right)=a \sin \frac{A}{2}$
c) $(b-c) \cos \left(\frac{B-C}{2}\right)=a \cos \left(\frac{A}{2}\right)$
d) $(b-c) \cos \frac{A}{2}=a \sin \left(\frac{B-C}{2}\right)$
16. The upper $\left(\frac{3}{4}\right)$ th portion of a vertical pole subtends an angle $\tan ^{-1}\left(\frac{3}{5}\right)$ at a point in the horizontal plane through its foot and at a distance 40 m from the foot. A possible height of the vertical pole is
a) 20 m
b) 40 m
c) 60 m
d) 80 m
17. If C and D are the points of internal and external division of line segment $A B$ in the same ratio, then $A C, A B, A D$ are in
a) AP
b) GP
c) HP
d) AGP
18. A ladder rests against a vertical wall at angle α to the horizontal. If its foot is pulled away from the wall through a distance ' a ' so that it slides a distance ' b ' down the wall making an angle β with the horizontal, then $a=$
a) $b \tan \left(\frac{\alpha-\beta}{2}\right)$
b) $b \tan \left(\frac{\alpha+\beta}{2}\right)$
c) $b \cot \left(\frac{\alpha-\beta}{2}\right)$
d) None of these
19. The angles A, B and C of a $\triangle A B C$ are in A.P. If $A B=6, B C=7$, then $A C=$
a) 5
b) 7
c) 8
d) None of these
20. The locus of a point whose difference of distance from points $(3,0)$ and $(-3,0)$ is 4 , is
a) $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$
b) $\frac{x^{2}}{5}-\frac{y^{2}}{4}=1$
c) $\frac{x^{2}}{2}-\frac{y^{2}}{3}=1$
d) $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$
