

CLASS : XIth DATE : SUBJECT : MATHS DPP NO. : 4

Topic :- co-ordinate geometry

1.	In a $\triangle ABC$, $2ac\sin\frac{A-B}{2}$ a) $a^2 + b^2 - c^2$	b) $c^2 + a^2 - b^2$	c) $b^2 - a^2 - c^2$	d) $c^2 - a^2 - b^2$
2. (<i>x</i> , <u>*</u>	If $P = (1, 0)$, $Q = (-1, 0)$ and $R = (2, 0)$ are thr y) satisfying the relation $SQ^2 + + SR^2 = 2SP^2$ is a) A straight line parallel to x-axis c) A circle with centre at the origin		ee given points, then the locus of the point <i>S</i>	
			d) A straight line parallel to <i>y</i> -axis	
З. соо	If orthocenter and circurd rdinates of its centroid a	umcentre of a triangle ar are	e respectively (1, 1) and (3, 2), then the	
	a) $\left(\frac{7}{3}, \frac{5}{3}\right)$	b) $\left(\frac{5}{3}, \frac{7}{3}\right)$	c) (7, 5)	d)None of these
4. = 6	The locus of the point of intersection of the lines $x \cot \theta + y \csc \theta = 2$ and $x \csc \theta + y \cot \theta$			
	a) A straight line	b) Circle	c) A hyperbola	d)An ellipse
5.	In $\triangle ABC$, ifcot A,cot B,c a) HP	$\begin{array}{c} \text{cot } C & \text{be in} \\ \text{b) GP} \end{array} $	² , c ² are in c) AP	d)None of these
6. The angels of elevation of the cloud at a point 2500 m high from the lake is 15° and the angels of its reflection to the lake is 45°. Then the height of cloud from the foot of lake is $2500\sqrt{2}$ m by $250\sqrt{2}$				
	aj 2500 _V 5 mbj	2500 mcJ	$500\sqrt{5}$ mdJ	None of these
7. ABC is a triangular park with $AB = AC = 100$ m. A clock tower is situated at the mid point of <i>B</i> . The angle of elevation, if the top of the toper at <i>A</i> and <i>B</i> are cot ⁻¹ 3.2 and cosec ⁻¹ 2.6 respectively. The height of the topurate				
THE	a) 16 m	b) 25 m	c) 50 m	d)None of these
8.	In $\triangle ABC$, $b = \sqrt{3}$, $c = 1$ and $\angle A = 30^\circ$, then the largest angle of the triangle is			
	a) 60°	b)135°	c) 90°	d)120°
9.	In an equilateral triangle, $R:r:r_1$ is equal to			
	a) 1:1:1	b) 1:2:3	c) 2:1:3	d)3:2:4

10. In a triangle, if
$$r_1 = 2r_2 = 3r_3$$
, then $\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$ is equal to
a) $\frac{75}{60}$ b) $\frac{155}{60}$ c) $\frac{176}{60}$ d) $\frac{191}{60}$

11. In a triangle *ABC*, *a*:*b*:*c* = 4:5:6. The ratio of the radius of the circumcircle to that of the incircle is $a^{15} + b^{11} + b^{16} + b^{16}$

3

a)
$$\frac{15}{4}$$
 b) $\frac{11}{5}$ c) $\frac{16}{7}$ d)

12. An aeroplane flying with uniform speed horizontally one kilometer above the ground is observed at an elevation of 60° . After 10 s, if the elevation is observed to be 30° , then the speed of the plane (in km/h) is

a)
$$\frac{240}{\sqrt{3}}$$
 b) $200\sqrt{3}$ c) $240\sqrt{3}$ d) $\frac{120}{\sqrt{3}}$

13. The angle of elevation of the top of a tower standing on a horizontal plane from a point *A* is α . After walking a distance a towards the foot of the tower the angle of elevation is found to be β . The height of the tower is

a)
$$\frac{a \sin \alpha \sin \beta}{\sin(\beta - \alpha)}$$
 b) $\frac{a \sin \alpha \sin \beta}{\sin(\alpha - \beta)}$ c) $\frac{a \sin(\beta - \alpha)}{\sin \alpha \sin \beta}$ d) $\frac{a \sin(\alpha - \beta)}{\sin \alpha \sin \beta}$

14. If the vertices of a triangle have integral coordinates, the triangle cannot be

- a) An equilateral triangle b) A right angled triangle
- c) An isosceles triangle d) None of the above
- 15. In a \triangle *ABC*, among the following which one is true?

a)
$$(b + c)\cos\frac{A}{2} = a\sin\left(\frac{B+C}{2}\right)$$

b) $(b + c)\cos\left(\frac{B+C}{2}\right) = a\sin\frac{A}{2}$
c) $(b - c)\cos\left(\frac{B-C}{2}\right) = a\cos\left(\frac{A}{2}\right)$
d) $(b - c)\cos\frac{A}{2} = a\sin\left(\frac{B-C}{2}\right)$

16. The upper $\left(\frac{3}{4}\right)$ th portion of a vertical pole subtends an angle $\tan^{-1}\left(\frac{3}{5}\right)$ at a point in the horizontal plane through its foot and at a distance 40 m from the foot. A possible height of the vertical pole is

17. If *C* and *D*are the points of internal and external division of line segment *AB* in the same ratio, then *AC*,*AB*,*AD* are in

18. A ladder rests against a vertical wall at angle α to the horizontal. If its foot is pulled away from the wall through a distance 'a' so that it slides a distance 'b' down the wall making an angle β with the horizontal, then a =

a)
$$b\tan\left(\frac{\alpha-\beta}{2}\right)$$
 b) $b\tan\left(\frac{\alpha+\beta}{2}\right)$ c) $b\cot\left(\frac{\alpha-\beta}{2}\right)$ d) None of these

19. The angles *A*,*B* and *C* of a \triangle *ABC* are in A.P. If *AB* = 6,*BC* = 7, then *AC* = a) 5 b) 7 c) 8 d) None of these

20. The locus of a point whose difference of distance from points (3, 0) and (-3, 0) is 4, is

a)
$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$
 b) $\frac{x^2}{5} - \frac{y^2}{4} = 1$ c) $\frac{x^2}{2} - \frac{y^2}{3} = 1$ d) $\frac{x^2}{3} - \frac{y^2}{2} = 1$