

CLASS: XIth
DATE:

SUBJECT: MATHS DPP NO.: 3

## Topic:- co-ordinate geometry

|                                                                                                                     |                                                                                                                                                                                     | •<br>•    •    •    •    •    •    •    •               |                                       |                                         |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|-----------------------------------------|--|--|--|
| 1.                                                                                                                  | At a point on the gro                                                                                                                                                               | und the angle of elevatio                               | on of a tower is such that            | its cotangent is $\frac{3}{5}$ . On     |  |  |  |
| wal                                                                                                                 | king 32 m towards the                                                                                                                                                               | e tower the cotangent of                                | f the angle of elevation is           | $\frac{2}{5}$ . The height of the tower |  |  |  |
| is                                                                                                                  |                                                                                                                                                                                     |                                                         |                                       | 5                                       |  |  |  |
|                                                                                                                     | a) 160 m                                                                                                                                                                            | b) 120 m                                                | c) 64 m                               | d) None of these                        |  |  |  |
| 2.                                                                                                                  |                                                                                                                                                                                     |                                                         | 3), (3, 4), (4, 5) and (5, 6)         |                                         |  |  |  |
|                                                                                                                     | a) 0                                                                                                                                                                                | b) 4                                                    | c) 6                                  | d) None of these                        |  |  |  |
| 3.                                                                                                                  | If the area of a triangle ABC is $\Delta$ , then $a^2 \sin 2B + b^2 \sin 2A$ is equal to                                                                                            |                                                         |                                       |                                         |  |  |  |
|                                                                                                                     | a) 3∆                                                                                                                                                                               | b) 2Δ                                                   | c) 4 <b>Δ</b>                         | d) -4Δ                                  |  |  |  |
|                                                                                                                     |                                                                                                                                                                                     |                                                         |                                       |                                         |  |  |  |
| 4.                                                                                                                  | Consider the follo                                                                                                                                                                  | wing statements :                                       |                                       |                                         |  |  |  |
| 1. If                                                                                                               | f in a $\triangle ABC$ , $\frac{\sin A}{\sin C} = \frac{\sin(A)}{\sin(A)}$                                                                                                          | $(\frac{A-B}{B-C})$ , then $a^2$ , $b^2$ , $c^2$ are in | n AP                                  |                                         |  |  |  |
| 2. If exradius $r_1, r_2$ and $r_3$ of a $\triangle$ <i>ABC</i> are in HP, then the sides $a$ , $b$ , $c$ are in AP |                                                                                                                                                                                     |                                                         |                                       |                                         |  |  |  |
| Wh                                                                                                                  | ich of these is/are cor                                                                                                                                                             | rect?                                                   |                                       |                                         |  |  |  |
|                                                                                                                     | a) Only (1)                                                                                                                                                                         | b) <mark>Only (</mark> 2)                               | c) Both (1) and (2)                   | d) None of these                        |  |  |  |
| c c                                                                                                                 | If the sides of the triangle are $p$ , $q$ , $\sqrt{p^2 + q^2 + pq}$ , then the greatest angle is                                                                                   |                                                         |                                       |                                         |  |  |  |
| 5.                                                                                                                  | -                                                                                                                                                                                   |                                                         |                                       |                                         |  |  |  |
|                                                                                                                     | a) $\frac{n}{2}$                                                                                                                                                                    | b) $\frac{5\pi}{4}$                                     | c) $\frac{2\pi}{3}$                   | $d)\frac{7\pi}{4}$                      |  |  |  |
|                                                                                                                     | 6. If $x$ , $y$ , $z$ are perpendicular drawn from the vertices of triangle having sides $a$ , $b$ and $c$ , then the value of $\frac{bx}{c} + \frac{cy}{a} + \frac{az}{b}$ will be |                                                         |                                       |                                         |  |  |  |
| vare                                                                                                                | a) $\frac{a^2 + b^2 + c^2}{2R}$                                                                                                                                                     |                                                         | c) $\frac{a^2+b^2+c^2}{4R}$           | $\mathrm{d})\frac{2(a^2+b^2+c^2)}{R}$   |  |  |  |
| 7.                                                                                                                  | A balloon is observed simultaneously from three points <i>A</i> , <i>B</i> and <i>C</i> on a straight road directly                                                                 |                                                         |                                       |                                         |  |  |  |
| und                                                                                                                 | ler it. The angular elev                                                                                                                                                            | vation at $B$ is twice and $a$                          | at $C$ is thrice that of $A$ . If the | he distance between A                   |  |  |  |
| and                                                                                                                 | B is 200 m and the di                                                                                                                                                               | stance between B and C                                  | is 100 m, then the heigh              | t of balloon is given by                |  |  |  |

8. If the distance of any point P from the points A(a+b,a-b) and B(a-b,a+b) are equal, then the locus of P is

a) x - y = 0

a) 50 m

b) ax + by = 0

b)  $50\sqrt{3}$  m

c) bx - ay = 0

c)  $50\sqrt{2}$  m

d)x + y = 0

d) None of these

| 9.                                                                                                                                                                                                                                                         | The length of altitude (a) $\frac{2}{\sqrt{10}}$                       | through $A$ of the $\triangle$ $ABC$ , b) $\frac{4}{\sqrt{10}}$ | where $A \equiv (-3, 0), B \equiv c) \frac{11}{\sqrt{10}}$ | $c = (4, -1), C \equiv (5, 2), \text{ is}$ $d) \frac{22}{\sqrt{10}}$ |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|
| 10. Triangle $ABC$ has vertices $(0, 0)$ , $(11, 60)$ and $(91, 0)$ . If the line $y = kx$ cuts the triangle into two triangles of equal area, then $k$ is equal to                                                                                        |                                                                        |                                                                 |                                                            |                                                                      |  |  |  |
|                                                                                                                                                                                                                                                            | a) $\frac{30}{51}$                                                     | b) $\frac{4}{7}$                                                | c) $\frac{7}{4}$                                           | d) $\frac{30}{91}$                                                   |  |  |  |
| 11. A pole stands at the centre of a rectangular field and it subtends angles of 15° and 45° at the mid points of the side of the field. If the length of its diagonal is 1200 m, then the height of flag staff is                                         |                                                                        |                                                                 |                                                            |                                                                      |  |  |  |
|                                                                                                                                                                                                                                                            | a) 400 m                                                               | b) 200 m                                                        | c) $300\sqrt{2+\sqrt{3}} \text{ m}$                        | d) $300\sqrt{2-\sqrt{3}} \text{ m}$                                  |  |  |  |
| 12. What is the equation of the locus a point which moves such that 4 times its distance from the $x$ -axis is the square of its distance from the origin?                                                                                                 |                                                                        |                                                                 |                                                            |                                                                      |  |  |  |
|                                                                                                                                                                                                                                                            | a) $x^2 - y^2 - 4y = 0$                                                | b) $x^2 + y^2 - 4 y  = 0$                                       | c) $x^2 + y^2 - 4x = 0$                                    | $d)x^2 + y^2 - 4 x  = 0$                                             |  |  |  |
| 13. A person standing on the bank of a river, observe that the angle of elevation of the top of a tree on the opposite bank of the river is 60° and when he retries 40m a way from the tree the angle of elevation become 30°. The breadth of the river is |                                                                        |                                                                 |                                                            |                                                                      |  |  |  |
|                                                                                                                                                                                                                                                            | a) 20 m                                                                | b) 30 m                                                         | c) 40 m                                                    | d) 60 m                                                              |  |  |  |
| 14.                                                                                                                                                                                                                                                        | There exist a $\triangle ABC$ sa<br>a) $\tan A + \tan B + \tan \theta$ |                                                                 | $b)\frac{\sin A}{2} = \frac{\sin B}{3} = \frac{\sin C}{1}$ |                                                                      |  |  |  |
|                                                                                                                                                                                                                                                            | c) $\sin A + \sin A$                                                   | $B = -\left(\frac{\sqrt{3}+1}{2\sqrt{2}}\right)\cos A\cos A$    | В                                                          |                                                                      |  |  |  |
| = 3                                                                                                                                                                                                                                                        | $\frac{\sqrt{3}}{4} = \sin A \sin B$                                   | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                          |                                                            | $\operatorname{nd}\sqrt{2}\left(\sin A + \cos A\right) =$            |  |  |  |
| 15. From a point a meters above a lake the angle of elevation of a cloud is $\alpha$ and the angle of depression of its reflection is $\beta$ . The height of the cloud is                                                                                 |                                                                        |                                                                 |                                                            |                                                                      |  |  |  |
|                                                                                                                                                                                                                                                            | a) $\frac{a\sin(\alpha+\beta)}{\sin(\alpha+\beta)}$ m                  | b) $\frac{a\sin(\alpha+\beta)}{\sin(\beta-\alpha)}$ m           | c) $\frac{a\sin(\beta-\alpha)}{\sin(\alpha+\beta)}$        | d) None of these                                                     |  |  |  |
| 16. The orthocentre of the triangle formed by (0, 0), (8, 0), (4, 6) is                                                                                                                                                                                    |                                                                        |                                                                 |                                                            |                                                                      |  |  |  |
|                                                                                                                                                                                                                                                            | a) $(4, \frac{8}{3})$                                                  | b) (3, 4)c)                                                     | (4, 3)d)                                                   | (-3,4)                                                               |  |  |  |
| 17. The $x$ -coordinate of the incentre of the triangle where the mid point of the sides are $(0, 1)$ , $(1, 1)$ and $(1, 0)$ , is                                                                                                                         |                                                                        |                                                                 |                                                            |                                                                      |  |  |  |

a)  $2 + \sqrt{2}$ b)  $1 + \sqrt{2}$  c)  $2 - \sqrt{2}$  d)  $1 - \sqrt{2}$ 

a) 
$$2 + \sqrt{2}$$

b) 
$$1 + \sqrt{2}$$

c) 
$$2 - \sqrt{2}$$

d) 
$$1 - \sqrt{2}$$

18. The locus of the point (x, y) which is equidistant from the points (a + b, b - a) and (a - b, a + b) is

a) 
$$ax = by$$

b) 
$$ax + by = 0$$

c) 
$$bx + ay = 0$$

$$d) bx - ay = 0$$

19. If the sum of the distances from two perpendicular lines in a plane is 1, then its locus is

a) A square

b) A circle

c) A straight line

- d) Two intersecting lines
- 20. A tower of *x* metres high, has a flagstaff at its top. The tower and the flagstaff subtend equal angles at a point distant y metres from the foot of the tower. Then the length of the flagstaff (in meters), is
  - a)  $\frac{y(x^2-y^2)}{(x^2+y^2)}$

- b)  $\frac{x(y^2 + x^2)}{(y^2 x^2)}$  c)  $\frac{x(x^2 + y^2)}{(x^2 y^2)}$  d)  $\frac{x(x^2 y^2)}{(x^2 + y^2)}$

