CLASS : XIth
SUBJECT : MATHS
DATE :
DPP NO. : 3

Topic :- CO-ORDINATE GEOMETRY

1. At a point on the ground the angle of elevation of a tower is such that its cotangent is $\frac{3}{5}$. On walking 32 m towards the tower the cotangent of the angle of elevation is $\frac{2}{5}$. The height of the tower is
a) 160 m
b) 120 m
c) 64 m
d) None of these
2. Area of quadrilateral whose vertices are $(2,3),(3,4),(4,5)$ and $(5,6)$, is equal to
a) 0
b) 4
c) 6
d) None of these
3. If the area of a triangle $A B C$ is Δ, then $a^{2} \sin 2 B+b^{2} \sin 2 A$ is equal to
a) 3Δ
b) 2Δ
c) 4Δ
d) -4Δ
4. Consider the following statements :
5. If in a $\triangle A B C, \frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}$, then a^{2}, b^{2}, c^{2} are in AP
6. If exradius r_{1}, r_{2} and r_{3} of a $\triangle A B C$ are in HP, then the sides a, b, c are in AP Which of these is/are correct?
a) Only (1)
b) Only (2)
c) Both (1) and (2)
d) None of these
7. If the sides of the triangle are $p, q, \sqrt{p^{2}+q^{2}+p q}$, then the greatest angle is
a) $\frac{\pi}{2}$
b) $\frac{5 \pi}{4}$
c) $\frac{2 \pi}{3}$
d) $\frac{7 \pi}{4}$
8. If x, y, z are perpendicular drawn from the vertices of triangle having sides a, b and c, then the value of $\frac{b x}{c}+\frac{c y}{a}+\frac{a z}{b}$ will be
a) $\frac{a^{2}+b^{2}+c^{2}}{2 R}$
b) $\frac{a^{2}+b^{2}+c^{2}}{R}$
c) $\frac{a^{2}+b^{2}+c^{2}}{4 R}$
d) $\frac{2\left(a^{2}+b^{2}+c^{2}\right)}{R}$
9. A balloon is observed simultaneously from three points A, B and C on a straight road directly under it. The angular elevation at B is twice and at C is thrice that of A. If the distance between A and B is 200 m and the distance between B and C is 100 m , then the height of balloon is given by
a) 50 m
b) $50 \sqrt{3} \mathrm{~m}$
c) $50 \sqrt{2} \mathrm{~m}$
d) None of these
10. If the distance of any point P from the points $A(a+b, a-b)$ and $B(a-b, a+b)$ are equal, then the locus of P is
a) $x-y=0$
b) $a x+b y=0$
c) $b x-a y=0$
d) $x+y=0$
11. The length of altitude through A of the $\triangle A B C$, where $A \equiv(-3,0), B \equiv(4,-1), C \equiv(5,2)$, is
a) $\frac{2}{\sqrt{10}}$
b) $\frac{4}{\sqrt{10}}$
c) $\frac{11}{\sqrt{10}}$
d) $\frac{22}{\sqrt{10}}$
12. Triangle $A B C$ has vertices $(0,0),(11,60)$ and $(91,0)$. If the line $y=k x$ cuts the triangle into two triangles of equal area, then k is equal to
a) $\frac{30}{51}$
b) $\frac{4}{7}$
c) $\frac{7}{4}$
d) $\frac{30}{91}$
13. A pole stands at the centre of a rectangular field and it subtends angles of 15° and 45° at the mid points of the side of the field. If the length of its diagonal is 1200 m , then the height of flag staff is
a) 400 m
b) 200 m
c) $300 \sqrt{2+\sqrt{3}} \mathrm{~m}$
d) $300 \sqrt{2-\sqrt{3}} \mathrm{~m}$
14. What is the equation of the locus a point which moves such that 4 times its distance from the x axis is the square of its distance from the origin?
a) $x^{2}-y^{2}-4 y=0$
b) $x^{2}+y^{2}-4|y|=0$
c) $x^{2}+y^{2}-4 x=0$
d) $x^{2}+y^{2}-4|x|=0$
15. A person standing on the bank of a river, observe that the angle of elevation of the top of a tree on the opposite bank of the river is 60° and when he retries 40 m a way from the tree the angle of elevation become 30°. The breadth of the river is
a) 20 m
b) 30 m
c) 40 m
d) 60 m
16. There exist a $\triangle A B C$ satisfying
a) $\tan A+\tan B+\tan C=0$
b) $\frac{\sin A}{2}=\frac{\sin B}{3}=\frac{\sin C}{1}$
c) $\quad \sin A+\sin B=-\left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right) \cos A \cos B$
$=\frac{\sqrt{3}}{4}=\sin A \sin B$
d) $(a+b)^{2}=c^{2}+a b$ and $\sqrt{2}(\sin A+\cos A)=$ $\sqrt{3}$
17. From a point a meters above a lake the angle of elevation of a cloud is α and the angle of depression of its reflection is β. The height of the cloud is
a) $\frac{a \sin (\alpha+\beta)}{\sin (\alpha+\beta)} m$
b) $\frac{a \sin (\alpha+\beta)}{\sin (\beta-\alpha)} \mathrm{m}$
c) $\frac{a \sin (\beta-\alpha)}{\sin (\alpha+\beta)}$
d) None of these
18. The orthocentre of the triangle formed by $(0,0),(8,0),(4,6)$ is
a) $\left(4, \frac{8}{3}\right)$
b) $(3,4) \mathrm{c})$
$(4,3) d)$
$(-3,4)$
19. The x-coordinate of the incentre of the triangle where the mid point of the sides are $(0,1),(1$, 1) and (1,0), is
a) $2+\sqrt{2}$
b) $1+\sqrt{2}$
c) $2-\sqrt{2}$
d) $1-\sqrt{2}$
20. The locus of the point (x, y) which is equidistant from the points $(a+b, b-a)$ and $(a-b, a+b)$ is
a) $a x=b y$
b) $a x+b y=0$
c) $b x+a y=0$
d) $b x-a y=0$
21. If the sum of the distances from two perpendicular lines in a plane is 1 , then its locus is
a) A square
b) A circle
c) A straight line
d) Two intersecting lines
22. A tower of x metres high, has a flagstaff at its top. The tower and the flagstaff subtend equal angles at a point distant y metres from the foot of the tower. Then the length of the flagstaff (in meters), is
a) $\frac{y\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)}$
b) $\frac{x\left(y^{2}+x^{2}\right)}{\left(y^{2}-x^{2}\right)}$
c) $\frac{x\left(x^{2}+y^{2}\right)}{\left(x^{2}-y^{2}\right)}$
d) $\frac{x\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)}$

