

CLASS: XIth DATE:

SUBJECT: MATHS

DPP NO. : 2

The x-coordinate of the incentre of the triangle where the mid points of the sides are (0, 1), (1, 1)1) and (1, 0) is

a)
$$2 + \sqrt{2}$$

b)
$$1 + \sqrt{2}$$

c)
$$2 - \sqrt{2}$$

d)
$$1 - \sqrt{2}$$

2. Let A(2, -3) and B(-2, 1) be vertices of a triangle ABC. If the centroid of this triangle moves on the line 2x + 3y = 1, then the locus of the vertex C is the line

a)
$$2x + 3y = 9$$

b)
$$2x - 3y = 7$$

c)
$$3x + 2y = 5$$

d)
$$3x - 2y = 3$$

The angle of elevation of the top of a tower at a point on the ground is 30°. If on walking 20 m toward the tower the angle of elevation becomes 60°, then the height of the tower is

b)
$$\frac{10}{\sqrt{3}}$$
m

c)
$$10\sqrt{3} \text{ m}$$

d) None of these

In a \triangle ABC, if 2s = a + b + c and $(s - b)(s - c) = x \sin^2 \frac{A}{2}$, then the value of x is

If p_1 , p_2 denote the length of the perpendiculars from the origin on the lines $x \sec \alpha + y$ $\csc \alpha = 2a$ and $x \cos \alpha + y \sin \alpha = a \cos 2\alpha$ respectively, then $\left(\frac{P_1}{P_2}, \frac{P_2}{P_2}\right)^2$ is equal to

a)
$$4\sin^2 4\alpha$$

b)
$$4\cos^2 4\alpha$$

c)
$$4\csc^2 4\alpha$$

d)
$$4 sec^2 4\alpha$$

The equation $\sqrt{(x-2)^2 + (y-1)^2} + \sqrt{(x+2)^2 + (y-4)^2} = 5$ represents

7. The value of $\frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_2^2} + \frac{1}{r^2}$ is

b)
$$\frac{a^2 + b^2 + c^2}{\Lambda^2}$$

c)
$$\frac{\Delta^2}{a^2 + b^2 + c^2}$$

b)
$$\frac{a^2 + b^2 + c^2}{\Delta^2}$$
 c) $\frac{\Delta^2}{a^2 + b^2 + c^2}$ d) $\frac{a^2 + b^2 + c^2}{\Delta}$

The sides of a triangle are 4cm, 5cm and 6cm. the area of the triangle is equal to

a)
$$\frac{15}{4}$$
 cm²

b)
$$\frac{15}{4}\sqrt{7}$$
 cm²

c)
$$\frac{4}{15}\sqrt{7} \text{ cm}^2$$

A vertical lamp-post, 6 m high, stands at a distance of 2 m from a wall, 4 m high. A 1.5 m tall man starts to walk away from the wall on the other side of the wall, in line with the lamp-post the maximum distance to which the man can walk remaining in the shadow is

a)
$$\frac{5}{2}$$
 m

b)
$$\frac{3}{2}$$
 m

		ngle α at a point A in the pint b feet just above A is b) bcot α tan β	=	= =
11.	In a ABC , if $b = 2$, $\angle B = a$) π	= 30° , then the area of the b) 2π	the circumcircle of Δ ABC c) 4π	in square unit is d) 6π
12. The base of a cliff is circular. From the extremities of a diameter of the base of angle of elevation of the top of the cliff are 30° and 60°. If the height of the cliff be 500 m, then the diameter of the base of the cliff is				
01 0	a) $1000\sqrt{3}$ m	b) $\frac{2000}{\sqrt{3}}$ m	c) $\frac{1000}{\sqrt{3}}$ m	$d)\frac{2000}{\sqrt{2}}m$
13.	3. If R denotes circumradius, then in \triangle ABC, $\frac{b^2-c^2}{2aR}$ is equal to			
	a) $\cos(B-C)$	b) $\sin(B-C)$	c) $\cos B - \cos C$	d) None of these
14.	The area between the o	curve $y = 1 - x $ and the	e <i>x</i> -axis is equal to	
	a) 1 sq unit	b) $\frac{1}{2}$ sq unit		d) 2 sq units
15. Angles <i>A</i> , <i>B</i> and <i>C</i> of a triangle are in AP with common difference 15 degree, then angle <i>A</i> is equal to				
cqu		b) 60°	c) 75°	d)30°
16.	In a triangle $\left(1 - \frac{r_1}{r_2}\right) \left(1\right)$	$-\frac{r_1}{r_3}$ = 2, then the trians	gle is	
	a) Right angled	b) <mark>Equila</mark> teral	c) Isosceles	d) None of these
17. The angle of elevation of the sun, if the length of the shadow of a tower is $\sqrt{3}$ times the height of the pole, is				
OI C	a) 150°b)	30°c)	60°d)	45°
18. If the equation $2x^2 + y^2 - 4x - 4y = 0$ is transformed to the equation $2X^2 + Y^2 - 8X - 8Y + 18 = 0$ by shifting the origin at a point P without rotating the coordinates axes, then the coordinates of P are				
	a) (1, 2)	b) $(1, -2)$	c) (– 1, 2)	d) $(-1, -2)$
19. A vertical pole <i>PS</i> has two marks <i>Q</i> and <i>R</i> such that the portions <i>PQ</i> , <i>PR</i> and <i>PS</i> subtend angles α , β , γ at a point on the ground distance <i>x</i> from the pole. If $PQ = a$, $PR = b$, $PS = c$ and $\alpha + \beta + \gamma = 180^{\circ}$ then x^2 is equal to				
	a) $\frac{a}{a+b+c}$	b) $\frac{b}{a+b+c}$	c) $\frac{c}{a+b+c}$	$d)\frac{abc}{a+b+c}$
20.	If in a \triangle ABC, $(s - a)(s$ a) 90°	(-b) = s(s-c), then an b) 45°	gle C is equal to c) 30°	d)75°