

DATE:

SUBJECT: MATHS DPP NO.: 10

1.	If A and B are two points having coordinates $(3, 4)$ and $(5, -2)$ respectively and P is a point
such	that $PA = PB$ and area of triangle $PAB = 10$ sq unit, then the coordinates of P are

- a) (7, 4) and (13, 2)
- b) (7, 2) and (1, 0)
- c) (2, 7) and (4, 13)
- d) None of these

2. In
$$\triangle$$
 ABC, $\angle A = \frac{\pi}{2}$, $b = 4$, $c = 3$, then the value of $\frac{R}{r}$ is equal to

d) $\frac{35}{24}$

3. In the angles A, B and C of a triangular are in the arithmetic progression and if a, b and c denotes the lengths of the sides opposite to A, B and C respectively, then the value of the expression $\frac{a}{c}\sin 2C + \frac{c}{a}\sin 2A$ is

a) $\frac{1}{2}$

b) $\frac{\sqrt{3}}{2}$

c) 1

d) $\sqrt{3}$

Two sides of a triangle are given by the roots of the equation $x^2 - 5x + 6 = 0$ and the angle between the sides is $\frac{\pi}{3}$. Then, the perimeter of the triangle is

- a) 5 + $\sqrt{2}$
- b) 5 + $\sqrt{3}$
- c) 5 + $\sqrt{5}$
- d) 5 + $\sqrt{7}$

5. In a triangle ABC, if $\angle A = 60^{\circ}$, a = 5, b = 4, then c is a root of the equation a) $c^2 - 5c - 9 = 0$ b) $c^2 - 4c - 9 = 0$ c) $c^2 - 10c + 25 = 0$ d) $c^2 - 5c - 41 = 0$

a)
$$c^2 - 5c - 9 = 0$$

b)
$$c^2 - 4c - 9 = 0$$

c)
$$c^2 - 10c + 25 = 0$$

d)
$$c^2 - 5c - 41 = 0$$

6. The angle of elevation of the top of vertical tower from a point *A* on the horizontal ground is found to be $\frac{\pi}{4}$. From A, a man walks 10 m up a path sloping at a angle $\frac{\pi}{6}$. After this the slope becomes steeper and after walking up another 10 m, the man reaches the top of the tower. Distance of A from the foot of the tower is

a)
$$5(1 + \sqrt{3})$$
m

b)
$$\frac{5}{2}(1+\sqrt{3})$$
m

c)
$$5(\sqrt{3}-1)$$
m

c)
$$5(\sqrt{3}-1)$$
m d) $\frac{5}{2}(\sqrt{3}-1)$ m

7. If the distance between the points $(a\cos\theta, a\sin\theta)$ and $(a\cos\phi, a\sin\phi)$ is 2a, then θ is equal to

a)
$$2n\pi \pm \pi + \phi$$
, $n \in \mathbb{Z}$

b)
$$n\pi + \frac{\pi}{2} + \phi$$
, $n \in \mathbb{Z}$

c)
$$n\pi - \phi, n \in \mathbb{Z}$$

d)
$$2n\pi + \phi$$
, $n \in Z$

8. If A(0,0), B(12,0), C(12,2), D(6,7) and E(0,5) are the vertices of the pendagon ABCDE, then its area in square units, is

a) 58

b)60

c) 61

d)63

0 A			l'atana a Cara de Cara d		
9. A flag is standing vertically on a tower of height <i>b</i> . On a point at a distance <i>a</i> from the foot of the					
tower, the flag and the tower subtend equal angles. The height of the flag is					
a) $b \cdot \frac{a^2 + b^2}{a^2 - b^2}$	b) $a \cdot \frac{a^2 - b^2}{a^2 + b^2}$	c) $b \cdot \frac{a^2 - b^2}{a^2 + b^2}$	d) $a \cdot \frac{a^2 + b^2}{a^2 - b^2}$		
10. A kite is flying at an inclination of 60° with the horizontal. If the length of the thread is 120 m, then the height of the kite is					

a)
$$1/r$$
 b) r/R c) R/r d) $1/R$

12. *AB* is a vertical pole. The end *A* is on the level ground. *C* is the middle point of *AB*. *P* is a point on the level ground. The portion BC subtends an angle β at P. If AP = n AB, then $\tan \beta =$

a)
$$\frac{n}{2 n^2 + 1}$$

a) $60\sqrt{3}$ m

b)
$$\frac{n}{n^2-1}$$

b)60 m

c)
$$\frac{n}{n^2+1}$$

d) None of these

13. If P(3,7) is a point on the line joining A(1,1) and B(6,16), then the harmonic conjugate Q of point *P* has the coordinates

b)
$$(-9, 29)$$
 c) $(9, -29)$

d)
$$(-9, -29)$$

14. The angles of a triangle are in the ratio 3:5:10. Then, the ratio of the smallest side to the greatest side is

d) 1:2cos 10°

15. In
$$\triangle ABC$$
, if $\begin{vmatrix} 1 & a & b \\ 1 & c & a \\ 1 & b & c \end{vmatrix} = 0$, then

 $\sin^2 A + \sin^2 B + \sin^2 C$ is equal to

a)
$$\frac{4}{9}$$

b)
$$\frac{9}{4}$$

c)
$$3\sqrt{3}$$

d) 1

16. From a station A due West of a tower the angle of elevation of the top of the tower is seen to be 45°. From a station B, 10 m from A and in the direction 45° South of East of angle of elevation is 30°, the height of tower is

a)
$$5\sqrt{2}(\sqrt{5}+1)m$$
 b) $\frac{5(\sqrt{5}+1)}{2}m$ c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}m$

$$b)\frac{5(\sqrt{5}+1)}{2}m$$

c)
$$\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$$
n

d) None of these

17. A straight line with negative slope passing through the point (1, 4) meets the coordinate axes at A and B. The minimum value of OA + OB is equal to

a) 5

b)6

c) 9

d)8

18. An observer finds that the elevation of the top of a tower is $22\frac{1^{\circ}}{2}$ and after walking 150 metres towards the foot of the tower he finds that the elevation of the top has increased to $67\frac{1}{2}$. The height of the tower in metres is

a) 50

b) 75

c) 125

d) 175

- 19. In an isosceles \triangle *ABC*, *AB* = *AC*. If vertical angle *A* is 20°, then $a^3 + b^3$ is equal to a) $3a^2b$ b) $3b^2c$ c) $3c^2a$ d) abc

