CLASS : XIth
SUBJECT : MATHS
DATE :
DPP NO. : 10

Topic :- CO-ORDINATE GEOMETRY

1. If A and B are two points having coordinates $(3,4)$ and $(5,-2)$ respectively and P is a point such that $P A=P B$ and area of triangle $P A B=10$ sq unit, then the coordinates of P are
a) $(7,4)$ and $(13,2)$
b) $(7,2)$ and $(1,0)$
c) $(2,7)$ and $(4,13)$
d) None of these
2. In $\triangle A B C, \angle A=\frac{\pi}{2}, b=4, c=3$, then the value of $\frac{R}{r}$ is equal to
a) $\frac{5}{2}$
b) $\frac{7}{2}$
c) $\frac{9}{2}$
d) $\frac{35}{24}$
3. In the angles A, B and C of a triangular are in the arithmetic progression and if a, b and c denotes the lengths of the sides opposite to A, B and C respectively, then the value of the expression $\frac{a}{c} \sin 2 C+\frac{c}{a} \sin 2 A$ is
a) $\frac{1}{2}$
b) $\frac{\sqrt{3}}{2}$
c) 1
d) $\sqrt{3}$
4. Two sides of a triangle are given by the roots of the equation $x^{2}-5 x+6=0$ and the angle between the sides is $\frac{\pi}{3}$. Then, the perimeter of the triangle is
a) $5+\sqrt{2}$
b) $5+\sqrt{3}$
c) $5+\sqrt{5}$
d) $5+\sqrt{7}$
5. In a triangle $A B C$, if $\angle A=60^{\circ}, a=5, b=4$, then c is a root of the equation
a) $c^{2}-5 c-9=0$
b) $c^{2}-4 c-9=0$
c) $c^{2}-10 c+25=0$
d) $c^{2}-5 c-41=0$
6. The angle of elevation of the top of vertical tower from a point A on the horizontal ground is found to be $\frac{\pi}{4}$. From A, a man walks 10 m up a path sloping at a angle $\frac{\pi}{6}$. After this the slope becomes steeper and after walking up another 10 m , the man reaches the top of the tower. Distance of A from the foot of the tower is
a) $5(1+\sqrt{3}) \mathrm{m}$
b) $\frac{5}{2}(1+\sqrt{3}) m$
c) $5(\sqrt{3}-1) \mathrm{m}$
d) $\frac{5}{2}(\sqrt{3}-1) \mathrm{m}$
7. If the distance between the points $(a \cos \theta, a \sin \theta)$ and $(a \cos \phi, a \sin \phi)$ is $2 a$, then θ is equal to
a) $2 n \pi \pm \pi+\phi, n \in Z$
b) $n \pi+\frac{\pi}{2}+\phi, n \in Z$
c) $n \pi-\phi, n \in Z$
d) $2 n \pi+\phi, n \in Z$
8. If $A(0,0), B(12,0), C(12,2), D(6,7)$ and $E(0,5)$ are the vertices of the pendagon $A B C D E$, then its area in square units, is
a) 58
b) 60
c) 61
d) 63
9. A flag is standing vertically on a tower of height b. On a point at a distance a from the foot of the tower, the flag and the tower subtend equal angles. The height of the flag is
a) $b \cdot \frac{a^{2}+b^{2}}{a^{2}-b^{2}}$
b) $a \frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
c) $b \frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
d) $a \frac{a^{2}+b^{2}}{a^{2}-b^{2}}$
10. A kite is flying at an inclination of 60° with the horizontal. If the length of the thread is 120 m , then the height of the kite is
a) $60 \sqrt{3} \mathrm{~m}$
b) 60 m
c) $\frac{60}{\sqrt{3}} \mathrm{~m}$
d) 120 m
11. $\frac{a \cos A+b \cos B+c \cos C}{a+b+c}$ is equal to
a) $1 / r$
b) r / R
c) R / r
d) $1 / R$
12. $A B$ is a vertical pole. The end A is on the level ground. C is the middle point of $A B . P$ is a point on the level ground. The portion $B C$ subtends an angle β at P. If $A P=n A B$, then $\tan \beta=$
a) $\frac{n}{2 n^{2}+1}$
b) $\frac{n}{n^{2}-1}$
c) $\frac{n}{n^{2}+1}$
d) None of these
13. If $P(3,7)$ is a point on the line joining $A(1,1)$ and $B(6,16)$, then the harmonic conjugate Q of point P has the coordinates
a) $(9,29)$
b) $(-9,29)$
c) $(9,-29)$
d) $(-9,-29)$
14. The angles of a triangle are in the ratio $3: 5: 10$. Then, the ratio of the smallest side to the greatest side is
a) $1: \sin 10^{\circ}$
b) $1: 2 \sin 10^{\circ}$
c) $1: \cos 10^{\circ}$
d) $1: 2 \cos 10^{\circ}$
15. In $\triangle A B C$, if $\left|\begin{array}{lll}1 & a & b \\ 1 & c & a \\ 1 & b & c\end{array}\right|=0$, then $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C$ is equal to
a) $\frac{4}{9}$
b) $\frac{9}{4}$
c) $3 \sqrt{3}$
d) 1
16. From a station A due West of a tower the angle of elevation of the top of the tower is seen to be 45°. From a station $B, 10 \mathrm{~m}$ from A and in the direction 45° South of East of angle of elevation is 30°, the height of tower is
a) $5 \sqrt{2}(\sqrt{5}+1) \mathrm{m}$
b) $\frac{5(\sqrt{5}+1)}{2} \mathrm{~m}$
c) $\frac{5 \sqrt{2}(\sqrt{5}+1)}{2} \mathrm{~m}$
d) None of these
17. A straight line with negative slope passing through the point $(1,4)$ meets the coordinate axes at A and B. The minimum value of $O A+O B$ is equal to
a) 5
b) 6
c) 9
d) 8
18. An observer finds that the elevation of the top of a tower is $22 \frac{1^{\circ}}{2}$ and after walking 150 metres towards the foot of the tower he finds that the elevation of the top has increased to $67 \frac{1^{\circ}}{2}$. The height of the tower in metres is
a) 50
b) 75
c) 125
d) 175
19. In an isosceles $\triangle A B C, A B=A C$. If vertical angle A is 20°, then $a^{3}+b^{3}$ is equal to
a) $3 a^{2} b$
b) $3 b^{2} c$
c) $3 c^{2} a$
d) $a b c$
20. In a $\triangle A B C, a\left(\cos ^{2} B+\cos ^{2} C\right)+\cos A(c \cos C+b \cos B)$ is equal to
a) a
b) b
c) c
d) $a+b+c$

