

CLASS : XIth DATE : SUBJECT : MATHS DPP NO. : 1

Topic:- co-ordinate geometry

- 1. In $\triangle ABC$, $a^2(\cos^2 B \cos^2 C) + b^2(\cos^2 C \cos^2 A) + c^2(\cos^2 A \cos^2 B)$ is equal to a) 0 b) 1 c) $a^2 + b^2 + c^2$ d) $2(a^2 + b^2 + c^2)$
- 2. If sin *A*:sin *B*:sin *C* = 3:4:5, then cos *A*:cos *B* is equal to
 a) 4:3 b) 5:3 c) 3:4 d) 3:5
- 3. If *A*, *B*, *C* are the angles of a triangle, then $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}$ is equal to a) $\frac{s}{R}$ b) $\frac{R}{s}$ c) $\frac{\Delta}{s^2}$ d) $\frac{s^2}{\Delta}$

4. Coordinates of the foot of the perpendicular drawn from (0, 0) to the line joining $(a\cos \alpha, a\sin \alpha)$ and $(a\cos \beta, a\sin \beta)$ are

a) $\left(\frac{a}{2}, \frac{b}{2}\right)$ c) $\left(\cos\frac{\alpha+\beta}{2}, \sin\frac{\alpha+\beta}{2}\right)$ b) $\left(\frac{a}{2}(\cos\alpha + \cos\beta), \frac{a}{2}(\sin\alpha + \sin\beta)\right)$ d) $\left(0, \frac{b}{2}\right)$

5. Three points are A(6, 3), B(-3, 5), C(4, -2) and P(x, y) is a point, then the ratio of area of $\triangle PBC$ and $\triangle ABC$ is

a) $\left|\frac{x+y-2}{7}\right|$ b) $\left|\frac{x-y+2}{2}\right|$ c) $\left|\frac{x-y-2}{7}\right|$ d) None of these

6. Two vertical poles 20 m and 80 m stands apart on a horizontal plane. The height of the point of intersection of the lines joining the top of each pole to the foot of the other is

a) 15 m	b) 16 m	c) 18 m	d) 50 m
---------	---------	---------	---------

7. A person on a ship sailing north sees two lighthouses which are 6 km apart, in a line due west. After an hour's tailing one of them bears south west and the other southern south west. The ship is travelling at a rate of

a) 12 km/hr b) 6 km/hr c) $3\sqrt{2}$ km/hr d) $(6 + 3\sqrt{2})$ km/hr

8. If α, β, γ are the real roots of the equation $x^3 - 3px^2 + 3qx - 1 = 0$, Then the centroid of the triangle whose vertices are $(\alpha, \frac{1}{\alpha}), (\beta, \frac{1}{\beta}) \text{ and } (\gamma, \frac{1}{\gamma}), \text{ is}$ a) (p,q) b) (q,p) c) (-p,q) d) (q,-p)

9. cen	If two vertices of a triangle are $(-2, 3)$ and $(5, -1)$. Orthocentre lies at the origin and troid on the line $x + y = 7$, then the third vertex lies at					
	a) (7, 4)	b) (8, 14)	c) (12, 21)	d)None of these		
10. What is the equation of the locus of a point which moves such that 4 times its distance from the <i>x</i> -axis is the square of its distance from the origin?						
	a) $x^2 + y^2 - 4y = 0$	b) $x^2 + y^2 - 4 y = 0$	c) $x^2 + y^2 - 4x = 0$	d) $x^2 + y^2 - 4 x = 0$		
11.	If $a^2 + b^2 = c^2$, then $s(s)$	(s-a)(s-b)(s-c) is equivalent	qual to			
	a) a^2b^2	b) $\frac{1}{4}a^2b^2$	c) $\frac{1}{2}a^2b^2$	d) $\frac{1}{2}ab$		
12.	12 The harmonic conjugate of $(4, -2)$ with respect to $(2, -4)$ and $(7, 1)$ is					
	a) $(-8, -14)$	b)(2,3)	c) $(-2, -3)$	d)(13, -5)		
13.	3. If O is the origin and $P(x_1, y_1), Q(x_2, y_2)$ are two points, then $OP.OQsin \angle POQ =$					
	a) $x_1 x_2 + y_1 y_2$	b) $x_1y_2 + x_2y_1$	c) $ x_1y_2 - x_2y_1 $	d)None of these		
14.	14. If $\triangle ABC$, if $a = 3$, $b = 4$, $c = 5$, then the value of sin 2 <i>B</i> is					
	a) 4/5	b)3/20	c) 24/25	d)1/50		
15.	From an aeroplane ver	ticall <mark>y over a straigh</mark> t ho	orizontal road, the angles	s of depression of two		
con	secutive milestones on	oppo <mark>site s</mark> ides of the aer	oplane are observed to	be α and β . The height of		
the	aeroplane above the roa	ad is				
	a) $\frac{\tan \alpha + \tan \beta}{\tan \alpha \tan \beta}$	b) $\frac{\tan \alpha \tan \beta}{\tan \alpha + \tan \beta}$	c) $\frac{\cot\alpha\cot\beta}{\cot\alpha+\cot\beta}$	d)None of these		

16. In $\triangle ABC$, if $\angle A = 45^\circ$, $\angle B = 75^\circ$, then $a + c\sqrt{2}$ is equal to b) 1 a) 0 c) *b* d)2*b*

17. Three vertical poles of heights h_1, h_2 and h_3 at the vertices *A*, *B* and *C* of a $\triangle ABC$ subtend angles α , β and γ respectively at the circumcentre of the triangle. If $\cot \alpha$, $\cot \beta$ and $\cot \gamma$ are in AP, then h_1 , h_2 , h_3 are in

a) AP	b)GP	c) HP	d) None of these
-------	------	-------	------------------

18. The area enclosed within the curve |x| + |y| = 1 is b) $2\sqrt{2}$ sq units c) $\sqrt{2}$ sq units a) 1 sq unit d) 2 sq units

19. *P* is a point on the segment joining the feet of two vertical poles of height *a* and *b*. The angles of elevation of the top of the poles from P are 45° each. Then, the squre of the distance between the top of the poles is

a)
$$\frac{a^2 + b^2}{2}$$
 b) $a^2 + b^2$ c) $2(a^2 + b^2)$ d) $4(a^2 + b^2)$

20. By rotating the coordinates axes through 30° in anticlockwise sense the equation $x^2 + 2\sqrt{3}$ $xy - y^2 = 2a^2$ changes to

b) $X^2 - Y^2 = a^2$ c) $X^2 - Y^2 = 2a^2$ a) $X^2 - Y^2 = 3a^2$ d)None of these