CLASS : XIth
DATE :

SUBJECT : MATHS
 DPP NO. : 1

Topic :- CO-ORDINATE GEOMETRY

1. In $\triangle A B C, a^{2}\left(\cos ^{2} B-\cos ^{2} C\right)+b^{2}\left(\cos ^{2} C-\cos ^{2} A\right)+c^{2}\left(\cos ^{2} A-\cos ^{2} B\right)$ is equal to
a) 0
b) 1
c) $a^{2}+b^{2}+c^{2}$
d) $2\left(a^{2}+b^{2}+c^{2}\right)$
2. If $\sin A: \sin B: \sin C=3: 4: 5$, then $\cos A: \cos B$ is equal to
a) $4: 3$
b) 5:3
c) $3: 4$
d) $3: 5$
3. If A, B, C are the angles of a triangle, then $\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}$ is equal to
a) $\frac{s}{R}$
b) $\frac{R}{s}$
c) $\frac{\Delta}{s^{2}}$
d) $\frac{s^{2}}{\Delta}$
4. Coordinates of the foot of the perpendicular drawn from $(0,0)$ to the line joining $(a \cos \alpha, a \sin \alpha$) and $(a \cos \beta, a \sin \beta)$ are
a) $\left(\frac{a}{2}, \frac{b}{2}\right)$
b) $\left(\frac{a}{2}(\cos \alpha+\cos \beta), \frac{a}{2}(\sin \alpha+\sin \beta)\right)$
c) $\left(\cos \frac{\alpha+\beta}{2}, \sin \frac{\alpha+\beta}{2}\right)$
d) $\left(0, \frac{b}{2}\right)$
5. Three points are $A(6,3), B(-3,5), C(4,-2)$ and $P(x, y)$ is a point, then the ratio of area of $\triangle P B C$ and $\triangle A B C$ is
a) $\left|\frac{x+y-2}{7}\right|$
b) $\left|\frac{x-y+2}{2}\right|$
c) $\left|\frac{x-y-2}{7}\right|$
d) None of these
6. Two vertical poles 20 m and 80 m stands apart on a horizontal plane. The height of the point of intersection of the lines joining the top of each pole to the foot of the other is
a) 15 m
b) 16 m
c) 18 m
d) 50 m
7. A person on a ship sailing north sees two lighthouses which are 6 km apart, in a line due west. After an hour's tailing one of them bears south west and the other southern south west. The ship is travelling at a rate of
a) $12 \mathrm{~km} / \mathrm{hr}$
b) $6 \mathrm{~km} / \mathrm{hr}$
c) $3 \sqrt{2} \mathrm{~km} / \mathrm{hr}$
d) $(6+3 \sqrt{2}) \mathrm{km} / \mathrm{hr}$
8. If α, β, γ are the real roots of the equation
$x^{3}-3 p x^{2}+3 q x-1=0$,
Then the centroid of the triangle whose vertices are
$\left(\alpha, \frac{1}{\alpha}\right),\left(\beta, \frac{1}{\beta}\right)$ and $\left(\gamma, \frac{1}{\gamma}\right)$, is
a) (p, q)
b) (q, p)
c) $(-p, q)$
d) $(q,-p)$
9. If two vertices of a triangle are $(-2,3)$ and $(5,-1)$. Orthocentre lies at the origin and centroid on the line $x+y=7$, then the third vertex lies at
a) $(7,4)$
b) $(8,14)$
c) $(12,21)$
d) None of these
10. What is the equation of the locus of a point which moves such that 4 times its distance from the x-axis is the square of its distance from the origin?
a) $x^{2}+y^{2}-4 y=0$
b) $x^{2}+y^{2}-4|y|=0$
c) $x^{2}+y^{2}-4 x=0$
d) $x^{2}+y^{2}-4|x|=0$
11. If $a^{2}+b^{2}=c^{2}$, then $s(s-a)(s-b)(s-c)$ is equal to
a) $a^{2} b^{2}$
b) $\frac{1}{4} a^{2} b^{2}$
c) $\frac{1}{2} a^{2} b^{2}$
d) $\frac{1}{2} a b$
12. The harmonic conjugate of $(4,-2)$ with respect to $(2,-4)$ and $(7,1)$ is
a) $(-8,-14)$
b) $(2,3)$
c) $(-2,-3)$
d) $(13,-5)$
13. If O is the origin and $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$ are two points, then $O P . O Q \sin \angle P O Q=$
a) $x_{1} x_{2}+y_{1} y_{2}$
b) $x_{1} y_{2}+x_{2} y_{1}$
c) $\left|x_{1} y_{2}-x_{2} y_{1}\right|$
d) None of these
14. If $\triangle A B C$, if $a=3, b=4, c=5$, then the value of $\sin 2 B$ is
a) $4 / 5$
b) $3 / 20$
c) $24 / 25$
d) $1 / 50$
15. From an aeroplane vertically over a straight horizontal road, the angles of depression of two consecutive milestones on opposite sides of the aeroplane are observed to be α and β. The height of the aeroplane above the road is
a) $\frac{\tan \alpha+\tan \beta}{\tan \alpha \tan \beta}$
b) $\frac{\tan \alpha \tan \beta}{\tan \alpha+\tan \beta}$
c) $\frac{\cot \alpha \cot \beta}{\cot \alpha+\cot \beta}$
d) None of these
16. In $\triangle A B C$, if $\angle A=45^{\circ}, \angle B=75^{\circ}$, then $a+c \sqrt{2}$ is equal to
a) 0
b) 1
c) b
d) $2 b$
17. Three vertical poles of heights h_{1}, h_{2} and h_{3} at the vertices A, B and C of a $\triangle A B C$ subtend angles α, β and γ respectively at the circumcentre of the triangle. If $\cot \alpha, \cot \beta$ and $\cot \gamma$ are in AP, then h_{1}, h_{2}, h_{3} are in
a) AP
b) GP
c) HP
d) None of these
18. The area enclosed within the curve $|x|+|y|=1$ is
a) 1 sq unit
b) $2 \sqrt{2}$ sq units
c) $\sqrt{2}$ sq units
d) 2 sq units
19. P is a point on the segment joining the feet of two vertical poles of height a and b. The angles of elevation of the top of the poles from P are 45° each. Then, the squre of the distance between the top of the poles is
a) $\frac{a^{2}+b^{2}}{2}$
b) $a^{2}+b^{2}$
c) $2\left(a^{2}+b^{2}\right)$
d) $4\left(a^{2}+b^{2}\right)$
20. By rotating the coordinates axes through 30° in anticlockwise sense the equation $x^{2}+2 \sqrt{3}$ $x y-y^{2}=2 a^{2}$ changes to
a) $X^{2}-Y^{2}=3 a^{2}$
b) $X^{2}-Y^{2}=a^{2}$
c) $X^{2}-Y^{2}=2 a^{2}$
d) None of these
