Class: XIth
Subject:Maths
DPP No. :8

Topic:-Binomial Theorem

1. If the expansion in power of x of the function
$\frac{1}{(1-a x)(1-b x)}$ is $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, then a_{n} is
a) $\frac{a_{n}-b^{n}}{b-a}$
b) $\frac{a^{n+1}-b^{n+1}}{b-a}$
c) $\frac{b^{n+1}-a^{n+1}}{b-a}$
d) $\frac{b^{n}-a^{n}}{b-a}$
2.

If $\left(1+2 x+x^{2}\right)^{5}=\sum_{k=0}^{15} a_{k} x^{k}$, then $\sum_{k=0}^{7}=a_{2 k}$ is equal to
a) 128
b) 156
c) 512
d) 1024
3. If n is even, then the middle term in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{n}$ is $924 x^{6}$, then n is equal to
a) 10
b) 12
c) 14
d) None of these
4. The coefficient of x^{5} in the expansion of $\left(1+x^{2}\right)^{5}(1+x)^{4}$ is
a) 30
b) 60
c) 40
d) None of these
5. The coefficient of x^{4} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{n}$ is
a) ${ }^{n} C_{4}$
b) ${ }^{n} C_{4}+{ }^{n} C_{2}$
c) ${ }^{n} C_{4}+{ }^{n} C_{2}+{ }^{n} C_{2}$
d) ${ }^{n} C_{4}+{ }^{n} C_{2}+{ }^{n} C_{1} \cdot{ }^{n} C_{2}$
6. If a, b, c, d be four consecutive coefficients in the binomial expansion of $(1+x)^{n}$, then the value of the expression $\left\{\left(\frac{b}{b+c}\right)^{2}-\frac{a c}{(a+b)(c+d)}\right\}$ (where $\left.x>0\right)$ is
a) <0
b) >0
c) $=0$
d) ${ }^{2}$
7. The coefficient of x^{3} in $\left(\sqrt{x^{5}}+\frac{3}{\sqrt{x^{3}}}\right)^{6}$, is
a) 0
b) 120
c) 420
d) 540
8. The coefficient of x^{-7} in the expansion of $\left[a x-\frac{1}{b x^{2}}\right]^{11}$ will be
a) $\frac{462 a^{6}}{b^{5}}$
b) $\frac{462 a^{5}}{b^{6}}$
c) $-\frac{462 a^{5}}{b^{6}}$
d) $-\frac{462 a^{6}}{b^{5}}$
9. The coefficient of x^{5} in the expansion of $(x+3)^{6}$ is
a) 18
b) 6
c) 12
d) 10
10. For $r=0, \ldots, 10$ let A_{r}, B_{r} and C_{r} denotes, respectively, the coefficient of x^{r} in the $(1+x)^{10}$, $(1+x)^{20}$, and $(1+x)^{30}$. Then
$\sum_{r=1}^{10} A_{r}\left(B_{10} B_{r}-C_{10} A_{r}\right)$
is equal to
a) $B_{10}-C_{10}$
b) $A_{10}\left(B_{10}^{2}-C_{10} A_{10}\right)$
c) 0
d) $C_{10}-B_{10}$
11. If p and q be positive, then the coefficients of x^{p} and x^{q} in the expansion of $(1+x)^{p+q}$ will be
a) Equal
b) Equal in magnitude but opposite in sign
c) Reciprocal to each other
d) None of the above
12. If for positive integers $r>1, n>2$, the coefficient of the (3r)th and $(r+2)$ th powers of x in the expansion of $(1+x)^{2 n}$ are equal, then
a) $n=2 r$
b) $n=3 r$
c) $n=2 r+1$
d) None of these
13. The range of values of the term independent of x in the expansion of $\left(x \sin ^{-1} \alpha+\frac{\cos ^{-1} \alpha}{x}\right)^{10}, \alpha \in$ [$-1,1]$, is
a) $\left[-\frac{{ }^{10} C_{5} \pi^{10}}{2^{5}}, \frac{{ }^{10} C_{5} \pi^{1(}}{2^{20}}\right.$ b) $\left[\frac{{ }^{10} C_{5} \pi^{2}}{2^{20}}, \frac{{ }^{10} C_{5} \pi^{2}}{2^{5}}\right] \quad$ c) $[1,2]$
d) $(1,2)$
14. If the coefficient of r th and $(r+1)$ th terms in the expansion of $(3+7 x)^{29}$ are equal, then r equals
a) 15
b) 21
c) 14
d) None of these
15. If the third term in the expansion $\left[x+x^{\log _{10} x}\right]^{5}$ is 10^{6}, then $x(>1)$ may be
a) 1
b) 10
c) $10^{-5 / 2}$
d) 10^{2}
16. In the expansion of $(1+x)^{50}$, the sum of the coefficient of add power of x is
a) Zero
b) 2^{49}
c) 2^{50}
d) 2^{51}
17. If the coefficients of $r^{t h}$ and $(r+1)^{t h}$ terms in the expansion of $(3+7 x)^{29}$ are equal, then $r=$
a) 15
b) 21
c) 14
d) None of these
18. In the expansion of $(1+x)^{2 n}(n \in N)$, the coefficients of $(p+1)^{t h}$ and $(p+3)^{t h}$ terms are equal, then
a) $p=n-2$
b) $p=n-1$
c) $p=n+1$
d) $p=2 n-2$
19. Let $(1+x)^{n}=\sum_{r=0}^{n} a_{r} x^{r}$. Then, $\left(1+\frac{a_{1}}{a_{0}}\right)\left(1+\frac{a_{2}}{a_{1}}\right) \ldots\left(1+\frac{a_{n}}{a_{n-1}}\right)$ is equal to
a) $\frac{(n+1)^{n+1}}{n!}$
b) $\frac{(n+1)^{n}}{n!}$
c) $\frac{n^{n-1}}{(n-1)!}$
d) $\frac{(n+1)^{n-1}}{(n-1)!}$
20. If $C_{0}, C_{1}, C_{2}, \ldots, C_{n}$ denote the binomial coefficients in the expansion of $(1+x)^{n}$, then the value of $\sum_{r=0}^{n}(r+1) C_{r}$, is
a) $n 2^{n}$
b) $(n+1) 2^{n-1}$
c) $(n+2) 2^{n-1}$
d) $(n+2) 2^{n-2}$

