

Subject: Maths Class: XIth DPP No.:8 Date:

1.	If the	expansion	in	power	of x	of the	function

$$\frac{1}{(1-ax)(1-bx)}$$
 is $a_0 + a_1x + a_2x^2 + a_3x^3 + ...$, then a_n is

a)
$$\frac{a_n - b^n}{b - a}$$

b)
$$\frac{a^{n+1} - b^{n+1}}{b - a}$$

a)
$$\frac{a_n - b^n}{b - a}$$
 b) $\frac{a^{n+1} - b^{n+1}}{b - a}$ c) $\frac{b^{n+1} - a^{n+1}}{b - a}$ d) $\frac{b^n - a^n}{b - a}$

$$d) \frac{b^n - a^n}{b - a}$$

2. If
$$(1 + 2x + x^2)^5 = \sum_{k=0}^{15} a_k x^k$$
, then $\sum_{k=0}^{7} = a_{2k}$ is equal to

a) 128

d) 1024

3. If *n* is even, then the middle term in the expansion of
$$\left(x^2 + \frac{1}{x}\right)^n$$
 is $924x^6$, then *n* is equal to

d) None of these

4. The coefficient of
$$x^5$$
 in the expansion of $(1 + x^2)^5 (1 + x)^4$ is

- a) 30
- b)60
- c) 40
- d) None of these

5. The coefficient of
$$x^4$$
 in the expansion of $(1 + x + x^2 + x^3)^n$ is

- a) nC_4
- b) ${}^{n}C_{4} + {}^{n}C_{2}$
- c) ${}^{n}C_{4} + {}^{n}C_{2} + {}^{n}C_{2}$

d)
$${}^{n}C_{4} + {}^{n}C_{2} + {}^{n}C_{1} \cdot {}^{n}C_{2}$$

6. If
$$a, b, c, d$$
 be four consecutive coefficients in the binomial expansion of $(1 + x)^n$, then the value of the expression $\left\{ \left(\frac{b}{b+c} \right)^2 - \frac{ac}{(a+b)(c+d)} \right\}$ (where $x > 0$) is

- a) < 0
- b) > 0
- c) = 0

$$d)^2$$

	a) 1	b) 10	c) $10^{-5/2}$	$d)^{10^2}$				
16.	n the expansion of $(1 + x)^{50}$, the sum of the coefficient of add power of x is							
	a) Zero	b) 2 ⁴⁹	c) 2 ⁵⁰	$d)^{2^{51}}$				
17.	If the coefficients of r^{th} and $(r+1)^{th}$ terms in the expansion of $(3+7x)^{29}$ are equal, then $r=$							
	a) 15	b)21	c) 14	d) None of these				
18.	. In the expansion of $(1+x)^{2n} (n \in \mathbb{N})$, the coefficients of $(p+1)^{th}$ and $(p+3)^{th}$ terms are equal, then							
	a) $p = n - 2$	b) $p = n - 1$	c) $p = n + 1$	d) $p = 2 n - 2$				
19.	Let $(1+x)^n = \sum_{r=0}^n a_r$. $\left(1 + \frac{a_1}{a_0}\right) \left(1 + \frac{a_2}{a_1}\right) \left(1 + \frac{a_2}{a_2}\right) $							
	a) $\frac{(n+1)^{n+1}}{n!}$	b) $\frac{(n+1)^n}{n!}$	c) $\frac{n^{n-1}}{(n-1)!}$	d) $\frac{(n+1)^{n-1}}{(n-1)!}$				
20.	If $C_0, C_1, C_2,, C_n$ denote $\sum_{r=0}^{n} (r+1)C_r$, is	the binomial coefficient	s in the expansion of (1	$+x)^n$, then the value of				
	a) <i>n</i> 2 ^{<i>n</i>}	b) $(n+1)2^{n-1}$	c) $(n+2)2^{n-1}$	d) $(n+2)2^{n-2}$				

15. If the third term in the expansion $[x + x^{\log_{10} x}]^5$ is 10^6 , then x(>1) may be