

Class: XIth
Date:
Subject: Maths
DPP No.:6

Topic :-Binomial Theorem

1.	The coefficient of $x^8y^6z^4$ in the expansion of $(x + y + z)^{18}$, is not equal to					
	a) $^{18}C_{14} \times {}^{14}C_{8}$	b) $^{18}C_{10} \times {}^{10}C_6$	c) $^{18}C_6 \times ^{12}C_8$	d) $^{18}C_6 \times {}^{14}C_6$		
2.	The coefficient of x^4 in the expansion of $(1 + x + x^2 + x^3)^{11}$, is					
	a) 900	b) 909	c) 990	d) 999		
3.	If the sum of the coefficients in the expansion of $(1-3x+10x^2)^n$ is a and if the sum of the coefficients in the expansion of $(1+x^2)^n$ is b , then					
	a) $a = 3 b$	b) $a = b^3$	c) $b = a^3$	d) None of these		
4.	For $n \in \mathbb{N}$, $10^{n-2} \ge 81n$ is					
	a) $n > 5$	b) $n \ge 5$	c) <i>n</i> < 5	d) $n > 8$		
5.	The first 3 terms in the expansion of $(1 + ax)^n$ $(n \ne 0)$ are 1, $6x$, and $16x^2$. Then, the value of a and a are respectively					
	a) 2 and 9	b) 3 and 2	c) $\frac{2}{3}$ and 9	$d)^{\frac{3}{2}}$ and 6		
6.	If the binomial expansion of $(a + b x)^{-2}$ is $\frac{1}{4} - 3x +$, then $(a,b) =$					
	a) (2, 12)	b)(2,8)	c) (-2, -12)	d) None of these		
7.	In the expansion of $\left(x^4 - \frac{1}{x^3}\right)^{15}$, the coefficient of x^{39} , is					
8.	a) 1365	b) -1365 n,n if $(1-y)^m(1+y)^n =$	c) 455	d) -455 $a_2 = 10$,		

	a) (35,20)	b) (45,35)	c) (35,45)	d)(20,45)			
9.	If a_1, a_2, a_3, a_4 are the co	efficients of any four co	nsecutive terms in the ex	expansion of $(1+x)^n$,			
	then $\frac{a_1}{a_1+a_2} + \frac{a_3}{a_3+a_4}$ is equal to						
	a_2	a_2	c) $\frac{2a_2}{a_2 + a_3}$	a_3			
	- 0	(- 0)	- 0	- 0			
10.			$f(a^2x^2-6ax+11)^{10}$, wh	here a is constant is			
	1024, then the value of a is						
	a) 5	b) 1	c) 2	d)3			
	- 7 -	-,	-,				
11.	If x^{2r} occurs in $\left(x + \frac{2}{x^2}\right)^n$, then $n - 2r$ must be of the form						
	a) $3k - 1$	b) 3 <i>k</i>	c) $3k + 1$	d) $3k + 2$			
12.	$(2^{3n}-1)$ will be divisible by $(\forall n \in N)$						
		•					
	a) 25	b)8	c) 7	d)3			
12	16 4la 6 4la 66:		- f (2				
13.	• If the sum of the coefficients in the expansion of $(\alpha x^2 - 2x + 1)^{35}$ is equal to the sum of the coefficient in the expansion of $(x - \alpha y)^{35}$, then $\alpha =$						
	coefficient in the expan	ision of $(x - ay)$, then	1 α –				
	a) 0	b) 1	c) Any real number	d) None of these			
4.4	•			-			
14.	•		c) Any real number $\frac{1}{1+7} + 3^{-1/8 \log_3(5^{x-1}+1)} $	-			
14.	•			-			
14.	If the ninth term in the			is equal to 180 and			
14.	If the ninth term in the			-			
	If the ninth term in the $x > 1$, then x equals a) $\log_{10} 15$	expansion of $\left\{3^{\log_3\sqrt{25^{x-1}}}\right\}$ b) $\log_5 15$	$\frac{1}{1+7} + 3^{-1/8 \log_3(5^{x-1}+1)} \right\}^{10}$ c) $\log_e 15$	is equal to 180 and d) None of these			
	If the ninth term in the $x > 1$, then x equals a) $\log_{10} 15$	expansion of $\left\{3^{\log_3\sqrt{25^{x-1}}}\right\}$ b) $\log_5 15$	$\sqrt{1+7} + 3^{-1/8 \log_3(5^{x-1}+1)} $	is equal to 180 and d) None of these			
15.	If the ninth term in the $x > 1$, then x equals a) $\log_{10} 15$ The coefficient of x^{53} in a) $^{100}C_{47}$	expansion of $\left\{3^{\log_3\sqrt{25^{x-1}}}\right\}$ b) $\log_5 15$ a the following expansion b) $^{100}C_{53}$	$c) \log_e 15$ $c) - 100 C_{53}$ $c) - 100 C_{53}$	is equal to 180 and d) None of these $e^{-m} \cdot 2^m$ is $e^{-m} \cdot 2^m = 100$ C ₁₀₀			
15.	If the ninth term in the $x > 1$, then x equals a) $\log_{10} 15$ The coefficient of x^{53} in a) $^{100}C_{47}$ The coefficient of the m	expansion of $\{3^{\log_3\sqrt{25^{x-1}}}\}$ b) $\log_5 15$ a the following expansion b) $^{100}C_{53}$ middle term in the binon	$c) \log_e 15$ $c) - 100 C_{53}$ $c) - 100 C_{53}$	is equal to 180 and d) None of these $1^{-m} \cdot 2^m$ is			
15.	If the ninth term in the $x > 1$, then x equals a) $\log_{10} 15$ The coefficient of x^{53} in a) $^{100}C_{47}$ The coefficient of the m $(1 - \alpha x)^6$ is the same, i	expansion of $\left\{3^{\log_3\sqrt{25^{x-1}}}\right\}$ b) $\log_5 15$ in the following expansion b) $^{100}C_{53}$ middle term in the binomif α equals	$c) \log_e 15$ $c) \log_e 15$ $c) - \frac{100}{m} C_{m}(x-3)^{100}$ $c) - \frac{100}{m} C_{53}$	is equal to 180 and d) None of these $-m \cdot 2^{m} \text{ is}$ $d) - {}^{100}C_{100}$ $s \text{ of } x \text{ of } (1 + \alpha x)^{4} \text{ and of}$			
15.	If the ninth term in the $x > 1$, then x equals a) $\log_{10} 15$ The coefficient of x^{53} in a) $^{100}C_{47}$ The coefficient of the m $(1 - \alpha x)^6$ is the same, i	expansion of $\{3^{\log_3\sqrt{25^{x-1}}}\}$ b) $\log_5 15$ a the following expansion b) $^{100}C_{53}$ middle term in the binon	$c) \log_e 15$ $c) - 100 C_{53}$ $c) - 100 C_{53}$	is equal to 180 and d) None of these $e^{-m} \cdot 2^m$ is $e^{-m} \cdot 2^m = 100$ C ₁₀₀			
15.	If the ninth term in the $x > 1$, then x equals a) $\log_{10} 15$ The coefficient of x^{53} in a) $^{100}C_{47}$ The coefficient of the m $(1 - \alpha x)^6$ is the same, if a) $-\frac{5}{3}$	expansion of $\left\{3^{\log_3\sqrt{25^{x-1}}}\right\}$ b) $\log_5 15$ in the following expansion b) $^{100}C_{53}$ iniddle term in the binomif α equals b) $\frac{10}{3}$	$c) \log_e 15$ $c) \log_e 15$ $c) - \frac{100}{m_{m=0}} C_m (x-3)^{100}$ $c) - \frac{3}{10}$	is equal to 180 and d) None of these $-m \cdot 2^{m} \text{ is}$ $d) - {}^{100}C_{100}$ $s \text{ of } x \text{ of } (1 + \alpha x)^{4} \text{ and of}$			
15. 16.	If the ninth term in the $x > 1$, then x equals a) $\log_{10} 15$ The coefficient of x^{53} in a) $^{100}C_{47}$ The coefficient of the m $(1 - \alpha x)^6$ is the same, if a) $-\frac{5}{3}$ The term independent	expansion of $\left\{3^{\log_3\sqrt{25^{x-1}}}\right\}$ b) $\log_5 15$ in the following expansion b) $^{100}C_{53}$ middle term in the binomif α equals	$c) \log_e 15$ $c) \log_e 15$ $c) - \frac{100}{m_{m=0}} C_m (x-3)^{100}$ $c) - \frac{3}{10}$	is equal to 180 and d) None of these $-m \cdot 2^{m} \text{ is}$ $d) - {}^{100}C_{100}$ $s \text{ of } x \text{ of } (1 + \alpha x)^{4} \text{ and of }$			
15. 16.	If the ninth term in the $x > 1$, then x equals a) $\log_{10} 15$ The coefficient of x^{53} in a) $^{100}C_{47}$ The coefficient of the m $(1 - \alpha x)^6$ is the same, if a) $-\frac{5}{3}$ The term independent	expansion of $\left\{3^{\log_3\sqrt{25^{x-1}}}\right\}$ b) $\log_5 15$ in the following expansion b) $^{100}C_{53}$ iniddle term in the binomif α equals b) $\frac{10}{3}$	$c) \log_e 15$ $c) \log_e 15$ $c) - \frac{100}{m_{m=0}} C_m (x-3)^{100}$ $c) - \frac{3}{10}$	is equal to 180 and d) None of these $-m \cdot 2^{m} \text{ is}$ $d) - {}^{100}C_{100}$ $s \text{ of } x \text{ of } (1 + \alpha x)^{4} \text{ and of}$			
15. 16.	If the ninth term in the $x > 1$, then x equals a) $\log_{10} 15$ The coefficient of x^{53} in a) $^{100}C_{47}$ The coefficient of the m $(1 - \alpha x)^6$ is the same, if a) $-\frac{5}{3}$	expansion of $\left\{3^{\log_3\sqrt{25^{x-1}}}\right\}$ b) $\log_5 15$ in the following expansion b) $^{100}C_{53}$ iniddle term in the binomif α equals b) $\frac{10}{3}$	$c) \log_e 15$ $c) \log_e 15$ $c) - \frac{100}{m_{m=0}} C_m (x-3)^{100}$ $c) - \frac{3}{10}$	is equal to 180 and d) None of these $-m \cdot 2^{m} \text{ is}$ $d) - {}^{100}C_{100}$ $s \text{ of } x \text{ of } (1 + \alpha x)^{4} \text{ and of }$			

c)
$$\frac{5}{2}$$

18. If $(1 + x - 2x^2)^6 = 1 + a_1x + a_2x^2 + ... + a_{12}x^{12}$, then the value of $a_2 + a_4 + ... + a_{12}$

Is

a) 31

b)32

c) 64

d) 1024

19. If $(1 + x - 3x^2)^{10} = 1 + a_1x + a_2x^2 + ... + a_{20}x^{20}$, then $a_2 + a_4 + a_6 + ... + a_{20}$ is equal to

- a) $\frac{3^{10}+1}{2}$ b) $\frac{3^9+1}{2}$ c) $\frac{3^{10}-1}{2}$ d) $\frac{3^9-1}{2}$

20. If $(1+x)^{2n} = a_0 + a_1 x + a_2 x^2 + ... + a_{2n} x^{2n}$, then $(a_0 - a_2 + a_4 - a_6 + \dots - a_{2n})^2 + (a_1 - a_3 + a_5 - a_7 + \dots + a_{2n-1})^2$ is equal to

a) 2ⁿ

b) 4ⁿ

c) 0

d) None of these