

Class: XIth

Date:

Subject: Maths

DPP No.:4

Topic :-Binomial Theorem

 2. 	When $32^{(32)^{(32)}}$ is divided by 7, then the remainder is a) 2 b) 8 c) 4 d) None of these The value of x , for which the 6th term in the expansion of $\left\{2^{\log_2\sqrt{(9^{x-1}+7)}} + \frac{1}{2^{(1/5)\log_2(3^{x-1}+1)}}\right\}^7$ is 84, is equal to						
	a) 4	b)3	c) 2	d) 5			
3.	If $P(n):2+4+6++(2n)$, $n \in N$, then $P(k)=k(k+1)+2$ implies $P(k+1)=(k+1)(k+2)+2$ is true for all $k \in N$. So, statement $P(n)=n(n+1)+2$ is true for						
4.	a) $n \ge 1$ The number of terms in powers of x , is	b) $n \ge 2$ In the expansion of $(1 + 2)$	c) $n \ge 3$ $(2x + x^2)^{20}$, when expand	d) None of these led in descending			
	a) 20	b) 21	c) 40	d)41			
5.	The binomial coefficien						
	a) $^{15}C_5$, $^{15}C_6$, $^{15}C_7$	b) $^{15}C_{10}$, $^{15}C_{9}$, $^{15}C_{8}$	c) $^{15}C_6$, $^{15}C_7$, $^{15}C_8$	d) $^{15}C_7$, $^{15}C_6$, $^{15}C_5$			
6.	$0^n + 3(4^{n+2}) + 5$ is divisible by $(n \in N)$						
	a) 7	b)5	c) 9	d)17			

7.	$\frac{{}^{8}C_{0}}{6} = {}^{8}C_{1} + {}^{8}C_{2} \cdot 6 - {}^{8}C_{3} \cdot 6^{2} + \dots + {}^{8}C_{8} \cdot 6^{7} \text{ is equal to}$							
	a) 0	b) 6 ⁷	c) 6 ⁸	d) $\frac{5^8}{6}$				
8.	If the coefficients of the second, third and fourth terms in the expansion of $(1 + x)^n$ are in AP, then n is equal to a) 7 b) 2 c) 6 d) None of these							
9.	The expansion of $(8 -$	the expansion of $(8-3x)^{3/2}$ in terms of powers of x is valid only if						
	a) $x > \frac{8}{3}$	b) $ x < \frac{8}{3}$	c) $x < \frac{3}{8}$	d) $x < \frac{8}{3}$				
10. If ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$ ${}^{n}C_{n}$ denote the coefficient of the binomial expansion $(1+x)^{n}$, then the								
	value of $C_1 + 3C_3 + 5C_5 +$ is							
	a) $n2^{n-2}$	b) $n2^{n-1}$	c) $(n+1)2^n$	$d)^{(n+2)2^{n-1}}$				
11.	The value of x in the expansion $[x + x^{\log_{10} x}]^5$, if the third term in the expansion is 1000000, is							
12	a) 10	b) 11	c) 12	d) None of these				
12.	${}^{n}C_{0} - \frac{1}{2}{}^{n}C_{1} + \frac{1}{3}{}^{n}C_{2} - \dots + (-1)^{n} \frac{{}^{n}C_{n}}{n+1}$ is equal to							
	a) <i>n</i>	b) $\frac{1}{n}$	c) $\frac{1}{n+1}$	$\frac{1}{n-1}$				
13.	The remainder left out when $8^{2n} - (62)^{2n+1}$ is divided by 9, is							
	a) 0	b) 2	c) 7	d)8				
14.	The number of rational terms in the expansion of $\left(\sqrt[3]{4} + \frac{1}{\sqrt[4]{6}}\right)^{20}$, is							
	a) 3	b) 18	c) 4	d)16				
15.	he number of terms in the expansion of $(x^2 + 1 + \frac{1}{x^2})^n$, $n \in \mathbb{N}$, is							
	a) 2 <i>n</i>	b) 3 n	c) 2 <i>n</i> + 1	d) 3n+				

16.	The digit at the unit place in the number $19^{2005} + 11^{2005} - 9^{2005}$ is						
	a) 2	b)1	c) 0	d)8			
17.	The coefficient of the middle term in the expansion of $(x + 2y)^6$ is						
	a) ${}^6\mathcal{C}_3$	b)8(6C ₃)	c) $8(^6C_5)$	d) 6C_4			
18.	The coefficient of x^{-17} in the expansion of						
	$\left(x^4 - \frac{1}{x^3}\right)^{15}$ is						
	a) $^{15}C_{11}$	b) $^{15}C_{12}$	c) $-{}^{15}C_{11}$	d) $-^{15}C_3$			
19.	If $\frac{(1-3x)^{1/2}+(1-x)^{5/3}}{\sqrt{4-x}}$ is	s approximately equal to	a + bx for small values	of x , then (a,b) is equal			
	to						
	a) $\left(1, \frac{35}{24}\right)$	b) $\left(1, -\frac{35}{24}\right)$	c) $\left(2, \frac{35}{12}\right)$	$d) \left(2, -\frac{35}{12}\right)$			
20.	If ${}^{18}C_{15} + 2({}^{18}C_{16}) + {}^{1}$	$^{7}C_{16} + 1 = {}^{n}C_{3}$, then <i>n</i> is	s equal to				
	a) 19	b) 20	c) 18	d) 24			