Class: XIth
Subject:Maths
Date :
DPP No. :4

Topic :-Binomial Theorem

1. When $32^{(32)^{(32)}}$ is divided by 7 , then the remainder is
a) 2
b) 8
c) 4
d) None of these
2. The value of x, for which the 6th term in the expansion of $\left\{2^{\log _{2} \sqrt{\left(9^{x-1}+7\right)}}+\frac{1}{2^{(1 / 5) \log _{2}\left(3^{x-1}+1\right)}}\right\}^{7}$ is 84 , is equal to
a) 4
b) 3
c) 2
d) 5
3. If $P(n): 2+4+6+\ldots+(2 n), n \in N$, then
$P(k)=k(k+1)+2$ implies
$P(k+1)=(k+1)(k+2)+2$
is true for all $k \in N$. So, statement $P(n)=n(n+1)+2$ is true for
a) $n \geq 1$
b) $n \geq 2$
c) $n \geq 3$
d) None of these
4. The number of terms in the expansion of $\left(1+2 x+x^{2}\right)^{20}$, when expanded in descending powers of x, is
a) 20
b) 21
c) 40
d) 41
5. The binomial coefficients which are in decreasing order are
a) ${ }^{15} C_{5},{ }^{15} C_{6},{ }^{15} C_{7}$
b) ${ }^{15} C_{10},{ }^{15} C_{9},{ }^{15} C_{8}$
c) ${ }^{15} C_{6},{ }^{15} C_{7},{ }^{15} C_{8}$
d) ${ }^{15} C_{7},{ }^{15} C_{6},{ }^{15} C_{5}$
6. $10^{n}+3\left(4^{n+2}\right)+5$ is divisible by $(n \in N)$
a) 7
b) 5
c) 9
d) 17
7. $\frac{{ }^{8} C_{0}}{6}={ }^{8} C_{1}+{ }^{8} C_{2} \cdot 6-{ }^{8} C_{3} \cdot 6^{2}+\ldots+{ }^{8} C_{8} \cdot 6^{7}$ is equal to
a) 0
b) 6^{7}
c) 6^{8}
d) $\frac{5^{8}}{6}$
8. If the coefficients of the second, third and fourth terms in the expansion of $(1+x)^{n}$ are in AP, then n is equal to
a) 7
b) 2
c) 6
d) None of these
9. The expansion of $(8-3 x)^{3 / 2}$ in terms of powers of x is valid only if
a) $x>\frac{8}{3}$
b) $|x|<\frac{8}{3}$
c) $x<\frac{3}{8}$
d) $x<\frac{8}{3}$
10. If ${ }^{n} C_{0},{ }^{n} C_{1},{ }^{n} C_{2} \ldots .{ }^{n} C_{n}$ denote the coefficient of the binomial expansion $(1+x)^{n}$, then the value of $C_{1}+3 C_{3}+5 C_{5}+\ldots$ is
a) $n 2^{n-2}$
b) $n 2^{n-1}$
c) $(n+1) 2^{n}$
d) $(n+2) 2^{n-1}$
11. The value of x in the expansion $\left[x+x^{\log _{10} x}\right]^{5}$, if the third term in the expansion is 1000000 , is
a) 10
b) 11
c) 12
d) None of these
12. ${ }^{n} C_{0}-\frac{1}{2}{ }^{n} C_{1}+\frac{1}{3}{ }^{n} C_{2}-\ldots+(-1)^{n} \frac{{ }^{n} C_{n}}{n+1}$ is equal to
a) n
b) $\frac{1}{n}$
c) $\frac{1}{n+1}$
d) $\frac{1}{n-1}$
13. The remainder left out when $8^{2 n}-(62)^{2 n+1}$ is divided by 9 , is
a) 0
b) 2
c) 7
d) 8
14. The number of rational terms in the expansion of $\left(\sqrt[3]{4}+\frac{1}{\sqrt[4]{6}}\right)^{20}$, is
a) 3
b) 18
c) 4
d) 16
15. The number of terms in the expansion of $\left(x^{2}+1+\frac{1}{x^{2}}\right)^{n}, n \in N$, is
a) $2 n$
b) $3 n$
c) $2 n+1$
d) $3 n+$
16. The digit at the unit place in the number $19^{2005}+11^{2005}-9^{2005}$ is
a) 2
b) 1
c) 0
d) 8
17. The coefficient of the middle term in the expansion of $(x+2 y)^{6}$ is
a) ${ }^{6} C_{3}$
b) $8\left({ }^{6} C_{3}\right)$
c) $8\left({ }^{6} C_{5}\right)$
d) ${ }^{6} C_{4}$
18. The coefficient of x^{-17} in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$ is
a) ${ }^{15} C_{11}$
b) ${ }^{15} C_{12}$
c) $-{ }^{15} C_{11}$
d) $-{ }^{15} C_{3}$
19. If $\frac{(1-3 x)^{1 / 2}+(1-x)^{5 / 3}}{\sqrt{4-x}}$ is approximately equal to $a+b x$ for small values of x, then (a, b) is equal to
a) $\left(1, \frac{35}{24}\right)$
b) $\left(1,-\frac{35}{24}\right)$
c) $\left(2, \frac{35}{12}\right)$
d) $\left(2,-\frac{35}{12}\right)$
20. If ${ }^{18} C_{15}+2\left({ }^{18} C_{16}\right)+{ }^{17} C_{16}+1={ }^{n} C_{3}$, then n is equal to
a) 19
b) 20
c) 18
d) 24
