

Class: XIth Date:

Solutions

Subject : Maths DPP No. : 3

Topic :-Binominal Theorem

1 (a)

Since,
$$x(1+x)^n = xC_0 + C_1x^2 + C_2x^3 + ... + C_nx^{n+1}$$

On differentiating w.r.t. *x*, we get

$$(1+x)^n + nx(1+x)^{n-1} = C_0 + 2C_1x + 3C_2x^2 + ... + (n+1)C_nx^n$$

Put x = 1, we get

$$C_0 + 2C_1 + 3C_2 + ... + (n+1)C_n = 2^n + n2^{n-1}$$

$$=2^{n-1}(n+2)$$

2 **(c)**

Let T_{r+1} denote the $(r+1)^{th}$ term in the expansion of $\left(x^3 - \frac{1}{x^2}\right)^n$. Then,

$$T_{r+1} = {}^{n}C_{r} x^{3n-5r} (-1)^{r}$$

For this term to contain x^5 , we must have

$$3n - 5r = 5 \Rightarrow r = \frac{3n - 5}{5}$$

$$\therefore \text{ Coefficient of } x^5 = {}^nC_{\frac{3n-5}{5}}(-1)^{\frac{3n-5}{5}}$$

Similarly,

Coefficient of
$$x^{10} = {}^{n}C_{\frac{3n-10}{5}}(-1)^{\frac{3n-10}{5}}$$

Now,

Coefficient of x^5 + Coefficient of $x^{10} = 0$

$$\Rightarrow {}^{n}C_{\frac{3n-5}{5}}(-1)^{\frac{3n-5}{5}} + {}^{n}C_{\frac{3n-10}{5}}(-1)^{\frac{3n-10}{5}} = 0$$

$$\Rightarrow {}^{n}C\underline{3n-5} = {}^{n}C\underline{3n-10}$$

$$\Rightarrow \frac{3n-5}{5} + \frac{3n-10}{5} = n$$

$$\Rightarrow 6n - 15 = 5n$$

$$\Rightarrow n = 15$$

$$(1 + x + x^{2} + x^{3})^{6} = (1 + x)^{6}(1 + x^{2})^{6}$$

$$= ({}^{6}C_{0} + {}^{6}C_{1}x + {}^{6}C_{2}x^{2} + {}^{6}C_{3}x^{3} + {}^{6}C_{4}x^{4} + {}^{6}C_{5}x^{5} + {}^{6}C_{6}x^{6}) \times ({}^{6}C_{0} + {}^{6}C_{1}x^{2} + {}^{6}C_{2}x^{4} + {}^{6}C_{3}x^{6} + {}^{6}C_{4}x^{8} + {}^{6}C_{5}x^{10} + {}^{6}C_{6}x^{12})$$

$$\therefore \text{ Coefficient of } x^{14} \text{ in } (1 + x + x^{2} + x^{3})^{6}$$

$$= {}^{6}C_{2} \cdot {}^{6}C_{6} + {}^{6}C_{4} \cdot {}^{6}C_{5} + {}^{6}C_{6} \cdot {}^{6}C_{4}$$

$$= 15 + 90 + 15 = 120$$

4 **(c)**

The 14th term from the end in the expansion of $(\sqrt{x} - \sqrt{y})^{17}$ is the $(18 - 14 + 1)^{th}$ i.e. 5th term from the beginning and is given by ${}^{17}C_4(\sqrt{x})^{13}(-\sqrt{y})^4 = {}^{17}C_4x^{13/2}y^2$

Put x = 1, we get

$$(1+2+3+...+n)^2 = \sum n^3$$

6 **(d)**

We have,

$$(1 + x + x^2)^n = a_0 + a_1x + a_2x^3 + \dots + a_{2n}x^{2n}$$

On differentiating both sides, we get

$$n(1 + x + x^{2})^{n-1}(1 + 2x) = a_{1} + 2a_{2}x + 3a_{3}x^{2} + \dots + 2na_{2n}x^{2n-1}$$

Now, on putting x = 1, we get

$$n(3)^{n-1} \cdot (3) = a_1 + 2a_2 + 3a_3 + \dots + 2na_{2n}$$

$$\Rightarrow a_1 + 2a_2 + 3a_3 + \dots + 2na_{2n} = n \cdot 3^n$$

7 **(c)**

There are total (n + 1) factors, let P(x) = 0Let $(x + {}^{n}C_{0})(x + 3 {}^{n}C_{1})(x + 5 {}^{n}C_{2})...[x + (2n + 1) {}^{n}C_{n}]$ $= a_{n}x^{n} + a_{n-1}x^{n-1} + ... + a_{1}x + a_{0}$ Clearly, $a_{n} = 1$

and roots of the equation P(x) = 0 are $-{}^{n}C_{0}$, $-3{}^{n}C_{1}$,...

Sum of roots = $-a_{n-1}/a_n$

$$= - {}^{n}C_{0} - 3 {}^{n}C_{1} - 5 {}^{n}C_{2}...$$

$$\Rightarrow a_{n-1} = (n+1)2^n$$

(b)

$$^{n-2}C_r + 2 \cdot ^{n-2}C_{r-1} + ^{n-2}C_{r-2}$$

$$= {\binom{n-2}{r}} + {\binom{n-2}{r-1}} + {\binom{n-2}{r-1}} + {\binom{n-2}{r-1}} + {\binom{n-2}{r-2}}$$

= ${\binom{n-1}{r}} + {\binom{n-1}{r-1}} + {\binom{n-2}{r-1}} + {\binom{n-2}{r-1$

9 **(d**

$$\frac{1}{(x-1)^2(x-2)} = \frac{1}{-2(1-x)^2(1-\frac{x}{2})}$$

$$= -\frac{1}{2} \left[(1-x)^{-2} \left(1 - \frac{x}{2} \right)^{-1} \right]$$

$$= -\frac{1}{2} \left[(1+2x+...) \left(1 + \frac{x}{2} + ... \right) \right]$$

 \therefore Coefficient of constant term is $-\frac{1}{2}$

10 **(b)**

In the expansion of $\left(x^2 + \frac{a}{x}\right)^5$, the general term is

$$T_{r+1} = {}^{5}C_{r}(x^{2})^{5-r} \left(\frac{a}{x}\right)^{r} = {}^{5}C_{r} \cdot a^{r} \cdot x^{10-3r}$$

For the coefficient of *x*, put

$$10 - 3r = 1 \Longrightarrow r = 3$$

 \therefore Coefficient of $x = {}^5C_3a^3 = 10a^3$

12 **(b)**

Coefficient of x^r in the expansion of $(1+x)^{10}$ is ${}^{10}C_r$ and it is maximum for $r=\frac{10}{2}=5$. Hence, Greatest coefficient $={}^{10}C_5=\frac{10!}{(5!)^2}$

13 **(c)**

Given expansion is $\left(\frac{a}{x} + bx\right)^{12}$

$$\therefore \text{ General term, } T_{r+1} = {}^{12}C_r \left(\frac{a}{x}\right)^{12-r} (bx)^r$$

$$= {}^{12}C_r(a)^{12-r}b^rx^{-12+2r}$$

For coefficient of x^{-10} , put

$$-12 + 2r = -10$$

$$\Rightarrow r = 1$$

Now, the coefficient of x^{-10} is

$$^{12}C_1(a)^{11}(b)^1 = 12a^{11}b$$

We have,

$$T_{r+1} = {}^{21}C_r \left(\sqrt[3]{\frac{a}{\sqrt{b}}}\right)^{21-r} \left(\sqrt{\frac{b}{\sqrt[3]{a}}}\right)^r$$

$$\Rightarrow T_{r+1} = {}^{21}C_r \, a^{7-\frac{r}{2}} b^{\frac{2}{3}r-\frac{7}{2}}$$

Since the powers of *a* and *b* are the same

$$\therefore 7 - \frac{r}{2} = \frac{2}{3}r - \frac{7}{2} \Rightarrow r = 9$$

$$(1-x)^{-4} = 1 \cdot x^{0} + 4x^{1} + \frac{4 \cdot 5}{2}x^{2} + \dots$$

$$= \left[\frac{1 \cdot 2 \cdot 3}{6}x^{0} + \frac{2 \cdot 3 \cdot 4}{6}x + \frac{3 \cdot 4 \cdot 5}{6}x^{2} + \frac{4 \cdot 5 \cdot 6}{6}x^{3} + \dots + \frac{(r+1)(r+2)(r+3)}{6}x^{r} + \dots \right]$$

Therefore, $T_{r+1} = \frac{(r+1)(r+2)(r+3)}{6} x^r$

17 **(a)**

We have,

$$y = \frac{1}{3} + \frac{1 \cdot 3}{3 \cdot 6} + \frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9} + \dots$$

$$\Rightarrow y + 1 = 1 + \frac{1}{3} + \frac{1 \cdot 3}{3 \cdot 6} + \frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9} + \dots$$

Comparing the series on RHS with

$$1 + n x + \frac{n(n-1)}{2!}x^2 + ...$$
, we get

$$n x = \frac{1}{3} \qquad \dots (i)$$

and,
$$\frac{n(n-1)}{2}x^2 = \frac{1}{6}$$
 ...(ii)

Dividing (ii) by square of (i), we get

$$\frac{n-1}{2n} = \frac{9}{6} \Rightarrow n = -\frac{1}{2}$$

$$\Rightarrow x = -\frac{2}{3}$$
 [putting $n = -\frac{1}{2}$ in (i)]

$$\therefore y + 1 = (1 + x)^n$$

$$\Rightarrow y + 1 = \left(1 - \frac{2}{3}\right)^{-1/2}$$

$$\Rightarrow y + 1 = \left(\frac{1}{3}\right)^{-1/2}$$

$$\Rightarrow (y+1)^2 = \left(\frac{1}{3}\right)^{-1} \Rightarrow y^2 + 2y + 1 = 3 \Rightarrow y^2 + 2y = 2$$

$$S(k) = 1 + 3 + 5 \dots + (2k - 1) = 3 + k^2$$

Put k = 1 in both sides, we get

LHS = 1 and RHS =
$$3 + 1 = 4$$

$$\Rightarrow$$
 LHS \neq RHS

Put (k + 1) in both sides in the place of k, we get

LHS =
$$1 + 3 + 5 \dots + (2k - 1) + (2k + 1)$$

RHS =
$$3 + (k + 1)^2 = 3 + k^2 + 2k + 1$$

Let LHS = RHS

Then,
$$1 + 3 + 5 \dots + (2k - 1) + (2k + 1)$$

$$= 3 + k^2 + 2k + 1$$

$$\Rightarrow$$
1 + 3 + 5 + ... + (2k - 1) = 3 + k^2

If S(k) is true, then S(k + 1) is also true.

Hence, $S(k) \Rightarrow S(k+1)$

19 **(b)**

The general term in the expansion of $(5^{1/6} + 2^{1/8})^{100}$ is given by

$$T_{r+1} = {}^{100}C_r (5^{1/6})^{100-r} (2^{1/8})^r$$

As 5 and 2 are relatively prime, T_{r+1} will be rational, if

 $\frac{100-r}{6}$ and $\frac{r}{8}$ are both integers *ie*, if 100-r is a multiple of 6 and r is a multiple of 8. As

 $0 \le r \le 100$, multiples of 8 upto 100 and corresponding value of 100 - r are

$$r = 0, 8, 16, 24, ..., 88, 96$$

$$ie$$
, $100 - r = 100, 92, 84, 76, ..., 12, 4$

Out of 100 - r, multiples of 6 are 84, 60, 36, 12

: There are four rational terms

Hence, number of irrational terms is 101 - 4 = 97

20 **(b)**

We have,

$$T_r = {}^{10}C_{r-1} \left(\frac{x}{3}\right)^{10-r+1} \left(-\frac{2}{x^2}\right)^{r-1}$$

$$\Rightarrow T_r = {}^{10}C_{r-1} \left(\frac{1}{3}\right)^{11-r} (-2)^{r-1} x^{13-3r}$$

For this term to contain x^4 , we must have

$$13 - 2r = 4 \Rightarrow r = 3$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	С	В	С	D	D	C	В	D	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	В	С	A	A	В	A	В	В	В