

Class: XIth

Date:

Subject: Maths

DPP No.:2

Topic :-Binomial Theorem

1.	$1 + \frac{2 \cdot 1}{3 \cdot 2} + \frac{2 \cdot 5}{3 \cdot 6} \left(\frac{1}{2}\right)^2 + \frac{2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9} \cdot \left(\frac{1}{2}\right)^3 + \dots$ is equal to					
	a) $2^{1/3}$	b) 3 ^{1/4}	c) 4 ^{1/3}	d) $3^{1/3}$		
2.	If in the expansion of $\left(3x - \frac{2}{x^2}\right)^{15} r$ th term is independent of x , then value of r is					
	a) 6	b)10	c) 9	d) 12		
3.	If $(1+x)^n = C_0 + C_1 x + C_2 x^2 + + C_n x^n$, then the value of $\sum_{0 \le r < s \le n} \sum (r+s)(C_r + C_s)$ is					
	a) $n^2.2^n$	b) <i>n</i> .2 ⁿ	c) $n^2 \cdot 2^{2n}$	d) None of these		
4.	If $C_0, C_1, C_2,, C_n$ denote the binomial coefficient in the expansion of $(1 + x)^n$, then the value of a $C_0 + (a + b)C_1 + (a + 2b)C_2 + + (a + nb)C_n$, is					
	$a) (a + nb)^{2n}$	$b)(a+nb)2^{n-1}$	c) $(2 a + nb)2^{n-1}$	$d)^{(2 a + nb)2^n}$		
5.	$C_{0}C_{r} + C_{1}C_{r+1} + C_{2}C_{r+1}$ a) $\frac{(2n)!}{(n-r)!(n+r)!}$ b) $\frac{n!}{r!(n+r)!}$ c) $\frac{n!}{(n-r)!}$ d) None of these	$_2++C_{n-r}C_n$ is equal t	0			
6.	7	and x^3 in the expansion 9	_	^		
	a) $-\frac{7}{9}$	/	9	$d)\frac{9}{7}$		
7.	The total number of terms in the expansion of $(x + a)^{100} + (x - a)^{100}$ after simplification will be					
	a) 202	b)51	c) 50	d) None of these		
8.	Coefficient of x^{19} in the polynomial $(x-1)(x-2)(x-20)$ is equal to					
	a) 210	b) -210	c) 20!	d) None of these		

9.	The sum of the last eight coefficient in the expansion of $(1 + x)^{15}$ is						
	a) 2 ¹⁶	b) 2 ¹⁵	c) 2 ¹⁴	d) None of these			
10.	The number of terms in a) $n + 1$ b) $n + 3$ c) $\frac{(n+1)(n+2)}{2}$ d) None of these	n the expansion of $(a + a)$	$(b+c)^n$ will be				
11.	The coefficient of y in the expansion of $(y^2 + c/y)^5$, is						
12.	a) 29 c The value of $(0.99)^{15}$ is	b) 10 <i>c</i>	c) $10 c^3$	d) $20 c^2$			
	a) 0.8432	b) 0.8601	c) 0.8502	d) None of these			
13.	The sum of the coefficients in the expansion of $(x + y)^n$ is 4096. The greatest coefficient in the expansion is						
	a) 1024	b) 924	c) 824	d)724			
14.	If in the expansion of $(1 + x)^n$, the coefficient of r th and $(r + 2)$ th term be equal, then r is equal to						
	a) 2n	b) $\frac{2n+1}{2}$	c) $\frac{n}{2}$	d) $\frac{2n-1}{2}$			
15.	If the second, third and fourth term in the expansion of $(x + a)^n$ are 240,720 and 1080						
	respectively, then the value of n is						
	a) 15	b) 20	c) 10	d)5			
16.	The value of $\frac{1}{81^n} - \frac{10}{81^n} {}^{2n}C_1 \frac{10^2}{81^n} {}^{2n}C_2 - \frac{10^3}{81^n} {}^{2n}C_3 + + \frac{10^{2n}}{81^n}$ is						
	a) 2	b)0	c) $\frac{1}{2}$	d)1			
17.	If $(1 + x + x^2)^n = \sum_{r=0}^{2n} a_r x^r$						
	then, $a_1 - 2a_2 + 3a_3 2na_{2n}$ is equal to						
18.	a) <i>n</i> The coefficient of the n	b) $-n$ niddle term in the expan	c) 0 sion of $(1 + x)^{2n}$, is	d) 2n			

a)
$$\frac{1 \cdot 3 \cdot 5...(2n-1)}{n!} 2^n$$
 b) $\frac{1 \cdot 3 \cdot 5...(2n-1)}{(n!)^2} 2^n$ c) $\frac{(2n)!}{(n!)^2} 2^{2n}$

d) None of these

- 19. The constant term in the expansion of $(1 + x)^{10} (1 + \frac{1}{x})^{12}$ is
 - a) $^{22}C_{10}$
- b)0

c) $^{22}C_{11}$

d) None of these

- 20. If $a_1=1$ and $a_n=na_{n-1}$ for all positive integer $n\geq 2$, then a_5 is equal to
 - a) 125
- b) 120
- c) 100

d)24