Class: XIth
Subject :Maths
Date :

Topic :-Binomial Theorem

1. $1+\frac{2 \cdot 1}{3 \cdot 2}+\frac{2 \cdot 5}{3 \cdot 6}\left(\frac{1}{2}\right)^{2}+\frac{2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9} \cdot\left(\frac{1}{2}\right)^{3}+\ldots$ is equal to
a) $2^{1 / 3}$
b) $3^{1 / 4}$
c) $4^{1 / 3}$
d) $3^{1 / 3}$
2. If in the expansion of $\left(3 x-\frac{2}{x^{2}}\right)^{15} r$ th term is independent of x, then value of r is
a) 6
b) 10
c) 9
d) 12
3. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$, then the value of $\sum_{0 \leq r<s \leq n} \sum(r+s)\left(C_{r}+C_{s}\right)$ is
a) $n^{2} \cdot 2^{n}$
b) $n .2^{n}$
c) $n^{2} \cdot 2^{2 n}$
d) None of these
4. If $C_{0}, C_{1}, C_{2}, \ldots, C_{n}$ denote the binomial coefficient in the expansion of $(1+x)^{n}$, then the value of a $C_{0}+(a+b) C_{1}+(a+2 b) C_{2}+\ldots+(a+n b) C_{n}$, is
a) $(a+n b)^{2 n}$
b) $(a+n b) 2^{n-1}$
c) $(2 a+n b) 2^{n-1}$
d) $(2 a+n b) 2^{n}$
5. $C_{0} C_{r}+C_{1} C_{r+1}+C_{2} C_{r+2}+\ldots+C_{n-r} C_{n}$ is equal to
a) $\frac{(2 n)!}{(n-r)!(n+r)!}$
b) $\frac{n!}{r!(n+r)!}$
c) $\frac{n!}{(n-r)!}$
d) None of these
6. If the coefficients of x^{2} and x^{3} in the expansion of $(3+a x)^{9}$ are the same, then the value of a, is
a) $-\frac{7}{9}$
b) $-\frac{9}{7}$
c) $\frac{7}{9}$
d) $\frac{9}{7}$
7. The total number of terms in the expansion of $(x+a)^{100}+(x-a)^{100}$ after simplification will be
a) 202
b) 51
c) 50
d) None of these
8. Coefficient of x^{19} in the polynomial $(x-1)(x-2) \ldots . .(x-20)$ is equal to
a) 210
b) -210
c) 20 !
d) None of these
9. The sum of the last eight coefficient in the expansion of $(1+x)^{15}$ is
a) 2^{16}
b) 2^{15}
c) 2^{14}
d) None of these
10. The number of terms in the expansion of $(a+b+c)^{n}$ will be
a) $n+1$
b) $n+3$
c) $\frac{(n+1)(n+2)}{2}$
d) None of these
11. The coefficient of y in the expansion of $\left(y^{2}+c / y\right)^{5}$, is
a) 29 c
b) $10 c$
c) $10 c^{3}$
d) $20 c^{2}$
12. The value of $(0.99)^{15}$ is
a) 0.8432
b) 0.8601
c) 0.8502
d) None of these
13. The sum of the coefficients in the expansion of $(x+y)^{n}$ is 4096 . The greatest coefficient in the expansion is
a) 1024
b) 924
c) 824
d) 724
14. If in the expansion of $(1+x)^{n}$, the coefficient of r th and $(r+2)$ th term be equal, then r is equal to
a) $2 n$
b) $\frac{2 n+1}{2}$
c) $\frac{n}{2}$
d) $\frac{2 n-1}{2}$
15. If the second, third and fourth term in the expansion of $(x+a)^{n}$ are 240,720 and 1080 respectively, then the value of n is
a) 15
b) 20
c) 10
d) 5
16. The value of $\frac{1}{81^{n}}-\frac{10}{81^{n}} 2 n C_{1} \frac{10^{2}}{81^{n}} 2 n C_{2}-\frac{10^{3}}{81^{2}}{ }^{2 n} C_{3}+\ldots+\frac{10^{2 n}}{81^{n}}$ is
a) 2
b) 0
c) $\frac{1}{2}$
d) 1
17. If $\left(1+x+x^{2}\right)^{n}=\sum_{r=0}^{2 n} a_{r} x^{r}$
then, $a_{1}-2 a_{2}+3 a_{3} \ldots-2 n a_{2 n}$ is equal to
a) n
b) $-n$
c) 0
d) $2 n$
18. The coefficient of the middle term in the expansion of $(1+x)^{2 n}$, is
a) $\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{n!} 2^{n}$ b) $\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{(n!)^{2}} 2^{n}$ c) $\frac{(2 n)!}{(n!)^{2}} 2^{2 n}$
d) None of these
19. The constant term in the expansion of $(1+x)^{10}\left(1+\frac{1}{x}\right)^{12}$ is
a) ${ }^{22} C_{10}$
b) 0
c) ${ }^{22} C_{11}$
d) None of these
20. If $a_{1}=1$ and $a_{n}=n a_{n-1}$ for all positive integer $n \geq 2$, then a_{5} is equal to
a) 125
b) 120
c) 100
d) 24
