

Class : XIth Date : Subject :Maths DPP No. :10

Topic :-Binomial Theorem

1.	$\sum_{k=0}^{10} {}^{20}C_k$ is equal to			
	a) $2^{19} + \frac{1}{2} {}^{20}C_{10}$	b) 2 ¹⁹	c) ${}^{20}C_{10}$	d)None of these
2.	The approximate value of $(7.995)^{1/3}$ correct to four decimal places is			
	a) 1.9995	b) 1.9996	c) 1.9990	d)1.9991
3.	If the binomial coefficients of 2^{nd} , 3^{rd} and 4^{th} terms in the expansion of			
	$\left\{\sqrt{2^{\log_{10}(10-3^x)}} + \sqrt[5]{2^{(x-2)\log_{10}3}}\right\}^m$ are in A.P and the 6 th term is 21, then the value(s) of <i>x</i> , is			
	(are)			
	a) 1, 3	b) 0, 2	c) 4	d) ⁻¹
4.	If ${}^{n}C_{12} = {}^{n}C_{6}$, then ${}^{n}C_{2}$ is equal to			
	a) 72	b)153	c) 306	d)2556
5.	In the expansion of $(x$	$\left(-\frac{1}{x}\right)^6$, the coefficient of $\frac{1}{x}$	x ⁰ is	
6.	a) 20 The term independent $(2)^{15}$	b) -20 of <i>x</i> in the expansion of	c) 30	d) —30
	$\left(x^3 + \frac{z}{x^2}\right)$ is			
7	a) T ₇	b) <i>T</i> ₈	c) T_9	d) T_{10}
/.	If the $(r + 1)$ th term in the expansion of $\left(\frac{a^{1/2}}{b^{1/6}} + \frac{b^{1/2}}{a^{1/6}}\right)^{-1}$ has equal exponents of both a and b , then			
	a) 8	b)9	c) 10	d)11

8. The coefficient of 1/x in the expansion of $\left(\frac{1}{x} + 1\right)^n (1+x)^n$ is

a)
$${}^{2n}C_n$$
 b) ${}^{2n}C_{n-1}$ c) ${}^{2n}C_1$ d) ${}^{n}C_{n-1}$
9. Let $[x]$ denote the greatest integer less than or equal to x. If $x = (\sqrt{3} + 1)^5$, then $[x]$ is equal to
a) 75 b) 50 c) 76 d) 152
10. The value of $2C_0 + \frac{2^3}{2^2}C_1 + \frac{2^3}{3}C_2 + \frac{2^4}{4}C_3 + ... + \frac{2^{11}}{11}C_{10}$, is
a) $\frac{3^{11} - 1}{11}$ b) $\frac{2^{11} - 1}{11}$ c) $\frac{11^3 - 1}{11}$ d) $\frac{11^2 - 1}{11}$
11. The sum of coefficients of the expansion $(\frac{1}{x} + 2x)^n$ in 6561. The coefficient of term
independent of x is
a) 16 ${}^{8}C_4$ b) ${}^{8}C_4$ c) ${}^{8}C_5$ d) None of these
12. In the expansion of $(1 + x)^{30}$, the sum of the coefficients of odd powers of x is
a) 2^{30} b) 2^{31} c) 0 d) 2^{29}
13. The 6th term in the expansion of $(2x^2 - \frac{1}{3x^2})^{10}$ is
a) $\frac{4580}{17}$ b) $-\frac{896}{27}$ c) $\frac{5580}{17}$ d) None of these
14. ${}^{47}C_4 + \sum_{n=1}^{n} {}^{52-r}C_3$ is equal to
a) ${}^{45}C_6$ b) ${}^{52}C_5$ c) ${}^{52}C_4$ d) None of these
15. The coefficient of x^n in the expansion of $(1 - 2x + 3x^2 - 4x^3 + ...)^{-n}$, is
a) $\frac{(2n)!}{n!}$ b) $\frac{(2n)!}{(n!)^2}$ c) $\frac{1}{2}\frac{(2n)!}{(n!)^2}$ d) None of these
15. The coefficient of x in the expansion of $(1 + x)^n(1 + 1/x)^n$, is
a) $C_0^2 + 2C_1^2 + 3 \cdot C_2^2 + ... + (n + 1)C_n^2$
b) $(C_0 + C_1 + ... + C_n)^2$
c) $C_0^2 + C_1^2 + ... + C_n^2$
d) None of these
17. If A and B are coefficients of x^r and x^{n-r} respectively in the expansion of $(1 + x)^n$, then
a) $A = B$ b) $A + B = 0$ c) $A = rB$ d) $A = nB$

18.
If
$$x = \frac{\begin{bmatrix} 729 + 6(2)(243) + 15(4)(81) \\ +20(8)(27) + 15(16)(9) \\ +6(32)3 + 64 \end{bmatrix}}{1 + 4(4) + 6(16) + 4(64) + 256}$$
, then $\sqrt{x} - \frac{1}{\sqrt{x}}$ is equal to
a) 0.2 b) 4.8 c) 1.02 d) 5.2

- 19. If the coefficients of *p*th, (p + 1)th and (p + 2)th terms in the expansion of $(1 + x)^n$ are in AP, then a) $n^2 - 2np + 4p^2 = 0$ b) $n^2 - n(4p + 1) + 4p^2 - 2 = 0$ c) $n^2 - n(4p + 1) + 4p^2 = 0$
 - d) None of the above
- 20. The sum of the rational terms in the expansion of $(\sqrt{2} + 3^{1/5})^{10}$ is
 - a) 41 b) 32 c) 18 d) 9