MATHEMATICS

SAMPLE PAPER #04

ANSWER AND SOLUTIONS

SECTION-A

- 1. Option (1)
- 2. Option (3) 20
- 3. Option (1)
 All real values except 10
- **4.** Option (4) Not defined
- 5. Option (2) 12
- 6. Option (3) $\frac{11}{36}$
- 7. Option (4)

 IV quadrant
- **8.** Option (3) 4
- 9. Option (1) -12
- 10. Option (2) $\pi r(\ell + 2h + r)$
- **11.** Option (4) 4
- **12.** Option (1) 14, 38
- **13.** Option (3)
 - 1
- 14. Option (2)515. Option (3)
- 15. Option (3)

- **16.** Option (2) 2r
- **17.** Option (2) 2:3
- **18.** Option (3) ±3

Option (2)

19.

- Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).
- **20.** Option (3)

 Assertion (A) is true but Reason (R) is false.

SECTION-B

- 21. 110, 120, 130,, 990 $a_{n} = 990$ $\Rightarrow 110 + (n 1) \times 10 = 990$ $\therefore n = 89$
- 22. D R C Q Q A P B

 $\therefore AB = AD$

$$AP = AS$$
, $BP = BQ$, $CR = CQ$ and $DR = DS$
 $\Rightarrow AP + BP + CR + DR = AS + BQ + CQ + DS$
 $\Rightarrow AB + CD = AD + CB$
But $AB = CD$ and $AD = CB$

Hence, ABCD is a square.

Length of tangent = $2 \times \sqrt{5^2 - 4^2} = 2 \times 3$ cm = 6 cm

OR

23. ΔADE ~ ΔGBD and ΔADE ~ ΔFEC ⇒ΔGBD ~ ΔFEC (AA Criterion)

$$\Rightarrow \frac{GD}{FC} = \frac{GB}{FE} \Rightarrow GD \times FE = GB \times FC$$

or $FG^2 = BG \times FC$

[:: GD = FE = FG]

Hence proved

24. Capacity of first glass = $\pi r^2 H - \frac{2}{3} \pi r^3$ = $\pi \times 9 (10 - 2) = 72 \pi \text{cm}^3$

Capacity of second glass = $\pi r^2 H - \frac{1}{3} \pi r^2 h$

 $= \pi \times 3 \times 3 (10 - 0.5) = 85.5\pi \text{cm}^3$

.. Suresh got more quantity of juice.

Extra amount = $13.5 \text{ } \pi\text{cm}^3$

25. For Jayanti,

Favourable outcome is (6, 6) i.e, 1

Probability (getting the number 36) = $\frac{1}{36}$

For Pihu,

Favourable outcome is 6 i.e, 1

Probability (getting the number 36) = $\frac{1}{6}$

.. Pihu has the better chance.

OR

Total number of integers = 29

- (i) Prob. (Prime number) = $\frac{6}{29}$
- (ii) Prob (Number divisible by 7) = $\frac{4}{29}$

SECTION-C

26. Let us assume to the contrary, that $2\sqrt{5} - 3$ is a rational number

$$\therefore 2\sqrt{5} - 3 = \frac{p}{q}, \text{ where p and q are integers}$$

and $q \neq 0$

$$\Rightarrow \sqrt{5} = \frac{p + 3q}{2q} \qquad \dots (1)$$

Since p and q are integers $\therefore \frac{p+3q}{2q}$ is a rational number.

 \therefore $\sqrt{5}$ is a rational number which is a contradiction as $\sqrt{5}$ is an irrational number.

Hence our assumption is wrong and hence $2\sqrt{5}-3$ is an irrational number.

OR

 $144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3$

$$180 = 2 \times 2 \times 3 \times 3 \times 5$$

$$HCF = 2 \times 2 \times 3 \times 3 = 36$$

$$13m - 16 = 36$$

$$13m = 52$$

$$m = 4$$

27. x + y = 7 and 2(x - y) + x + y + 5 + 5 = 27 $\therefore x + y = 7$ and 3x - y = 17

Solving, we get, x = 6 and y = 1

- **28.** (i) A(1, 7), B(4, 2), C(-4, 4)

 Distance travelled by Seema = $\sqrt{34}$ units

 Distance travelled by Aditya = $\sqrt{68}$ units
 - :. Aditya travels more distance
 - (ii) Coordinate of D are

$$\left(\frac{1+4}{2}, \frac{7+2}{2}\right) = \left(\frac{5}{2}, \frac{9}{2}\right)$$

29. $\sin\theta + \cos\theta = \sqrt{3} \implies (\sin\theta + \cos\theta)^2 = 3$ $\Rightarrow 1 + 2\sin\theta\cos\theta = 3 \implies \sin\theta\cos\theta = 1$

$$\therefore \tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = 1$$

Hence proved

30. Required Area = Area of triangle - Area of 3 sectors

Area of Triangle =
$$\frac{1}{2} \times 24 \times 7 = 84 \text{ m}^2$$

Area of three sectors

=
$$\frac{\pi r^2}{360^\circ}$$
 × (sum of three angles of triangle)

$$=\frac{22\times7\times7\times180^{\circ}}{7\times2\times2\times360^{\circ}}=\frac{77}{4} \text{ or } 19.25 \text{ m}^2$$

∴ Required Area =
$$\frac{259}{4}$$
 or 64.75 m²

OR

Quantity of water flowing through pipe in 1 hour

$$= \pi \times \frac{7}{100} \times \frac{7}{100} \times 15000 \text{m}^3$$

Required time

$$= \left(50 \times 44 \times \frac{21}{100}\right) \div \left(\pi \times \frac{7}{100} \times \frac{7}{100} \times 15000\right)$$

= 2 hours

31. LHS:
$$\frac{\frac{\sin^3 \theta}{\cos^3 \theta}}{1 + \frac{\sin^2 \theta}{\cos^2 \theta}} + \frac{\frac{\cos^3 \theta}{\sin^3 \theta}}{1 + \frac{\cos^2 \theta}{\sin^2 \theta}}$$

$$= \frac{\frac{\sin^3 \theta}{\cos^3 \theta}}{\frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta}} + \frac{\frac{\cos^3 \theta}{\sin^3 \theta}}{\frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta}}$$

$$= \frac{\sin^3 \theta}{\cos \theta} + \frac{\cos^3 \theta}{\sin \theta}$$

$$= \frac{\sin^4 \theta + \cos^4 \theta}{\cos \theta \sin \theta}$$

$$= \frac{(\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta}{\cos \theta \sin \theta}$$

$$=\frac{1-2\sin^2\theta\cos^2\theta}{\cos\theta\sin\theta}$$

$$= \frac{1}{\cos\theta\sin\theta} - \frac{2\sin^2\theta\cos^2\theta}{\cos\theta\sin\theta}$$

$$= \sec\theta \csc\theta - 2\sin\theta\cos\theta$$

=RHS

SECTION-D

32. Given : A ΔABC in which line ℓ parallel to BC (DE||BC) intersecting AB at D and AC at E.

To prove:
$$\frac{AD}{DB} = \frac{AE}{EC}$$

Construction : Join D to C and E to B. Through E draw EF perpendicular to AB i.e., EF \perp AB and through D draw DG \perp AC.

Proof:

Area of
$$(\triangle ADE) = \frac{1}{2}(AD \times EF)$$
 ...(1)

(Area of $\Delta = \frac{1}{2}$ base \times altitude)

Area of
$$(\Delta BDE) = \frac{1}{2}(BD \times EF)$$
 ...(2)

Dividing (1) by (2)

$$\frac{\text{Area }(\Delta ADE)}{\text{Area }(\Delta BDE)} = \frac{\frac{1}{2}AD \times EF}{\frac{1}{2}BD \times EF} = \frac{AD}{DB} \qquad ...(3)$$

Similarly,
$$\frac{\text{Area }(\Delta \text{ADE})}{\text{Area }(\Delta \text{CDE})} = \frac{\frac{1}{2}\text{AE} \times \text{DG}}{\frac{1}{2}\text{EC} \times \text{DG}} = \frac{\text{AE}}{\text{EC}}$$

$$\frac{\text{Area }(\Delta \text{ADE})}{\text{Area }(\Delta \text{CDE})} = \frac{\text{AE}}{\text{EC}} \qquad ...(4)$$

Area (
$$\triangle BDE$$
) = Area ($\triangle CDE$) ...(5)

[Δs BDE and CDE are on the same base DE and between the same parallel lines DE and BC.]

From (4) and (5)

$$\frac{\text{Area}(\Delta ADE)}{\text{Area}(\Delta BDE)} = \frac{AE}{EC} \qquad ...(6)$$

From (3) and (6)

$$\frac{AD}{DB} = \frac{AE}{EC}$$

Hence proved.

33. Let the original speed of the train be x km/h

$$\therefore \frac{360}{x} - \frac{360}{x+5} = \frac{48}{60}$$

$$\Rightarrow$$
 $x^2 + 5x - 2250 = 0$

$$\Rightarrow$$
 $(x + 50) (x - 45) = 0$

$$\therefore$$
 $x = 45$

Hence original speed of the train = 45km/h

OR

$$\frac{1}{x} - \frac{1}{x-2} = 3$$

$$\frac{x-2-x}{x(x-2)} = \frac{3}{1}$$

$$3x^2 - 6x = -2$$

$$3x^2 - 6x + 2 = 0$$

$$x = \frac{6 \pm \sqrt{12}}{6}$$

$$=\frac{3+\sqrt{3}}{3},\frac{3-\sqrt{3}}{3}$$

34.

In
$$\triangle ABE$$
, $\frac{BE}{AB} = \tan 60^{\circ}$

$$\Rightarrow$$
 AB = 3000 m

In
$$\triangle DAC$$
, $\frac{DC}{AC} = \tan 30^{\circ}$

$$\Rightarrow$$
 AC = 9000 m

$$BC = AC - AB = 6000m$$

$$\therefore \text{ Speed of aeroplane} = \frac{6000}{30} \text{ m/s} = 200 \text{m/s}$$
$$= 720 \text{ km/hr}$$

35.

•	Daily Wages (in Rs.)	Number of Workers(f _i)	x _i	\mathbf{u}_{i}	f _i u _i
	100-120	10	110	-3	- 30
	120-140	15	130	-2	- 30
	140-160	20	150	- 1	- 20
	160-180	22	170	0	0
	180-200	18	190	1	18
	200-220	12	210	2	24
	220-240	13	230	3	39
	Total	110			1

Mean daily wages =
$$170 + \frac{1}{110} \times 20 = ₹170.19$$
 (approx.)

Mode = 160 +
$$\frac{22-20}{44-20-18}$$
 × 20 = ₹166.67 (approx.)

CLASS - X STANDARD (CBSE SAMPLE PAPER)

OR

Re-writing the distribution in the form of the grouped distribution with each class interval as 10 and taking assumed mean to be 55, we get the following table.

Class	Mid – value	$d_i = x_i - A$. d _i	Number of	f _i u _i
	$\left(x_{i} = \frac{\ell + u}{2}\right)$	(A = 55)	$u_i = \frac{d_i}{h}$	students (f _i)	
0 - 10	5	-50	- 5	12	-60
10 - 20	15	-40	-4	10	-40
20 - 30	25	-30	-3	13	-39
30 – 40	35	-20	-2	15	-30
40 – 50	45	-10	-1	20	-20
50 - 60	55 = A	0	0	16	0
60 - 70	65	10	1	11	11
70 - 80	75	20	2	7	14
80 – 90	85	30	3	5	15
90 – 100	95	40	4	6	24

Mean =
$$A + \frac{f_i u_i}{f_i} \times h = 55 + \frac{-125}{115} \times 10$$

= 44.13 (approx)

SECTION-E

36. (i) Since each row is increasing by 10 seats, so it is an AP with first term a = 30, and common difference d = 10.

So number of seats in 10th row

$$= a_{10}$$

= $a + 9d$
= $30 + 9 \times 10 = 120$

(ii)
$$S_n = \frac{n}{2} [2 \times 30 + (n-1)10]$$

$$1500 = \frac{n}{2} [2 \times 30 + (n-1)10]$$

$$3000 = 50n + 10n^2$$

$$n^2 + 5n - 300 = 0$$

$$n^2 + 20n - 15n - 300 = 0$$

$$(n + 20)(n - 15) = 0$$

Rejecting the negative value, n = 15

OR

Number of seats already put up to the 10^{th} row = S_{10}

$$S_{10} = \frac{10}{2} \left\{ (2 \times 30 + (10 - 1)10) \right\}$$

$$= 5(60 + 90) = 750$$

So, the number of seats still required to be put are 1500 - 750 = 750

- (iii) If number of rows = 17 then the middle row is the 9^{th} row $a_8 = a + 8d = 30 + 80 = 110$ seats
- 37. (i) Let AD be x cm, then DB = (12 x) cm $\therefore AD = AF, CF = CE, DB = BE$

[tangents to a circle from an external point]

$$\therefore$$
 AF = xcm,

then
$$CF = (10 - x)cm$$

$$BE = (12 - x)cm,$$

then
$$CE = 8 - (12 - x) = (x - 4)$$
 cm

Now
$$CF = CE$$

$$10 - x = x - 4$$

$$2x = 14$$

$$\Rightarrow x = 7$$

Hence,
$$AD = 7$$
 cm

Since, : BE =
$$(12 - x)$$
cm = $(12 - 7)$ cm

[:
$$x = 7 \text{ proved}$$
]

$$BE = 5 \text{ cm}$$

(ii) Radius, OD = 4 cm

and
$$AB = 12 \text{ cm}$$

Then, area of ΔO

Then, area of ∆OAB

$$= \frac{1}{2} \times OD \times AB$$

$$= \frac{1}{2} \times 4 \times 12$$

$$= 24 \text{ cm}^2$$

(iii) Perimeter of $\triangle ABC = AB + BC + CA$ = (12 + 8 + 10) cm = 30 cm

OR

Since, 100 cm cost = Rs.1500

So, 30 cm cost =
$$\frac{1500 \times 30}{100}$$
 = Rs.450

38. (i) For cuboid

$$\ell = 15$$
 cm, b = 10 cm and h = 3.5 cm

Volume of the cuboid = $\ell \times b \times h$

$$= 15 \times 10 \times 3.5$$

$$= 525 \text{ cm}^3$$

(ii) For conical depression:

$$r = 0.5 \text{ cm},$$

$$h = 1.4 \text{ cm}$$

Volume of conical depression

$$=\frac{1}{3}\times\frac{22}{7}\times0.5\times0.5\times1.4$$

$$=\frac{11}{30}$$
 cm³

(iii) Volume of four conical depressions

$$= 4 \times \frac{11}{30} = 1.47 \,\mathrm{cm}^3$$

OR

Volume of the wood in the entire stand

= Volume of cuboid - Volume of 4 conical depressions

$$= 525 - 1.47$$

$$= 523.53 \text{ cm}^3$$