Chapter 3 Motion in a Plane

Assignment 1

Class 11

CLASS : XITH
SUBJECT : PHYSICS
DATE :

Topic :- MOTION IN A PLANE

1. The angle of projection at which the horizontal range and maximum height of projectile are equal is
a) 45°
b) $\theta=\tan ^{-1}(0.25)$
c) $\theta=\tan ^{-1} 4$ or $\left(\theta=76^{\circ}\right)$
d) 60°
2. A body slides down a frictionless track which ends in a circular loop of diameter D. Then the minimum height h of the body in terms of D so that it may just complete the loop, is
a) $h=\frac{5}{2} D$
b) $h=\frac{3}{2} D$
c) $h=\frac{5}{4} D$
d) $h=2 D$
3. A force $\vec{F}=2 \hat{\imath}+2 \hat{\jmath} \mathrm{~N}$ displaces a particle through $\overrightarrow{\mathrm{S}}=2 \hat{\imath}+2 \hat{\mathrm{k}} \mathrm{m}$ in 16 s . The power developed by \vec{F} is
a) $0.25 \mathrm{~J} \mathrm{~s}^{-1}$
b) $25 \mathrm{~J} \mathrm{~s}^{-1}$
c) $225 \mathrm{~J} \mathrm{~s}^{-1}$
d) $450 \mathrm{~J} \mathrm{~s}^{-1}$
4. A sphere of mass m is tied to end of a string of length l and rotated through the other end along a horizontal circular path with speed v. The work done in full horizontal circle is
a) 0
b) $\left(\frac{m v^{2}}{l}\right) \cdot 2 \pi l$
c) $m g .2 \pi$
d) $\left(\frac{m v^{2}}{l}\right) \cdot(l$
5. Two projectile are thrown with the same initial velocity at angles α and $\left(90^{\circ}-\alpha\right)$ with the horizontal. The maximum heights attained by them are h_{1} and h_{2} respectively. Then $\frac{h_{1}}{h_{2}}$ is equal
a) $\sin ^{2} \alpha$
b) $\cos ^{2} \alpha$
c) $\tan ^{2} \alpha$
d) 1
6. A particle P is at the origin starts with velocity $\overrightarrow{\mathbf{v}}=(2 \hat{\mathbf{i}}-4 \hat{\mathbf{\jmath}}) \mathrm{ms}^{-1}$ with constant acceleration $(3 \hat{\mathbf{\imath}}-5 \hat{\mathbf{j}}) \mathrm{ms}^{-2}$. After travelling for 2 s , its distance from the origin is
a) 10 m
b) 10.2 m
c) 9.8 m
d) 11.7 m
7. A small sphere is hung by a string fixed to a wall. The sphere is pushed away from the wall by a stick. The force acting on the sphere are shown in figure. Which of the following statements is wrong?

a) $P=W \tan \theta$
b) $\overrightarrow{\mathrm{T}}+\overrightarrow{\mathrm{P}}+\overrightarrow{\mathrm{W}}=0$
c) $T^{2}=P^{2}+W^{2}$
d) $T=P+W$
8. A particle moves in a circle of radius 30 cm . Its liner speed is given by $v=2 t$, where t is in second and v in ms^{-1}. Find out its, radial and tangential acceleration at $t=3 \mathrm{~s}$, respectively,
a) $220 \mathrm{~ms}^{-2}, 50 \mathrm{~ms}^{-2}$
b) $100 \mathrm{~ms}^{-2}, 5 \mathrm{~ms}^{-2}$
c) $120 \mathrm{~ms}^{-2}, 2 \mathrm{~ms}^{-2}$
d) $110 \mathrm{~ms}^{-2}, 10 \mathrm{~ms}^{-2}$
9. A small particle of mass m is projected at an angle θ with the x-axis with an initial velocity v_{0} in the $x-y$ plane as shown in the figure. At a time $t<\frac{v_{0} \sin \theta}{g}$, the angular momentum of the particle is

a) $-m g v_{0} t^{2} \cos \theta \hat{\mathbf{j}}$
b) $m g v_{0} t \cos \theta \hat{\mathbf{k}}$
c) $-\frac{1}{2} m g v_{0} t^{2} \cos \theta \hat{\mathbf{k}}$
d) $\frac{1}{2} m g v_{0} t^{2} \cos \theta \hat{\mathbf{i}}$
10. A body is thrown upward from the earth surface with velocity $5 \mathrm{~m} / \mathrm{s}$ and from a planet surface with velocity $3 \mathrm{~m} / \mathrm{s}$. Both follow the same path. What is the projectile acceleration due to gravity on the planet
a) $2 \mathrm{~m} / \mathrm{s}^{2}$
b) $3.5 \mathrm{~m} / \mathrm{s}^{2}$
c) $4 \mathrm{~m} / \mathrm{s}^{2}$
d) $5 \mathrm{~m} / \mathrm{s}^{2}$
11. An unbanked curve has a radius of 60 m . The maximum speed at which the car make a turn is (Take $\mu=0.75$)
a) $7 \mathrm{~ms}^{-1}$
b) $14 \mathrm{~ms}^{-1}$
c) $21 \mathrm{~ms}^{-1}$
d) $2.1 \mathrm{~ms}^{-1}$
12. A fly wheel rotates about a fixed axis and slows down from 300 rpm to 100 rpm in 2 min . Then its angular retardation in rad/min is
a) $\frac{100}{\pi}$
b) 100
c) 100π
d) 200π
13. A particle is projected with a velocity $200 \mathrm{~ms}^{-1}$ at an angle of 60°. At the highest point, it explodes into three particles of equal masses. One goes vertically upwards with a velocity $100 \mathrm{~ms}^{-1}$, the second particle goes vertically downwards. What is the velocity of third particle?
a) $120 \mathrm{~ms}^{-1}$ making 60° angle with horizontal
b) $200 \mathrm{~ms}^{-1}$ making 60° angle with horizontal
c) $300 \mathrm{~ms}^{-1}$
d) $200 \mathrm{~ms}^{-1}$
14. A car is moving on a circular path and takes a turn. If R_{1} and R_{2} be the reactions on the inner and outer wheels respectively, then
a) $R_{1}=R_{2}$
b) $R_{1}<R_{2}$
c) $R_{1}>R_{2}$
d) $R_{1} \geq R_{2}$
15. If the vector $\vec{A}=2 \hat{\imath}+4 \hat{\jmath}$ and $\vec{B}=5 \hat{\imath}+p \hat{\jmath}$ are parallel to each other, the magnitude of \vec{B} is
a) $5 \sqrt{5}$
b) 10
c) 15
d) $2 \sqrt{5}$
16. A body is revolving with a uniform speed v in a circle of radius r. The tangential acceleration is
a) $\frac{v}{r}$
b) $\frac{v^{2}}{r}$
c) Zero
d) $\frac{v}{r^{2}}$
17. A bridge is in the form of a semi-circle of radius 40 m . The greatest speed with which a motor cycle can cross the bridge without leaving the ground at the highest point is $(g=$ $10 \mathrm{~ms}^{-2}$) (frictional force is negligibly small)
a) $40 \mathrm{~ms}^{-1}$
b) $20 \mathrm{~ms}^{-1}$
c) $30 \mathrm{~ms}^{-1}$
d) $15 \mathrm{~ms}^{-1}$
18. A car is moving with high velocity when it has a turn. A force acts on it outwardly because of
a) Centripetal force
b) Centrifugal force
c) Gravitational force
d) All the above
19. If time of flight of a projectile is 10 seconds. Range is 500 meters. The maximum height attained by it will be
a) 125 m
b) 50 m
c) 100 m
d) 150 m
20. A stone is projected with a velocity $20 \sqrt{2} \mathrm{~ms}^{-1}$ at an angle of 45° to the horizontal. The average velocity of stone during its motion from starting point to its maximum height is $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$
a) $5 \sqrt{5} \mathrm{~ms}^{-1}$
b) $10 \sqrt{5} \mathrm{~ms}^{-1}$
c) $20 \mathrm{~ms}^{-1}$
d) $20 \sqrt{5} \mathrm{~ms}^{-1}$
