

## **Chapter 3 Motion in a Plane**

**Assignment 1** 

**Class 11** 



CLASS : XITH DATE : SUBJECT : PHYSICS DPP NO. : 2

## **Topic :- MOTION IN A PLANE**

1. The angle of projection at which the horizontal range and maximum height of projectile are equal is

a) 
$$45^{\circ}$$
  
c)  $\theta = \tan^{-1} 4 \text{ or } (\theta = 76^{\circ})$   
b)  $\theta = \tan^{-1}(0.25)$   
d)  $60^{\circ}$ 

2. A body slides down a frictionless track which ends in a circular loop of diameter *D*. Then the minimum height *h* of the body in terms of *D* so that it may just complete the loop, is

a) 
$$h = \frac{5}{2}D$$
 b)  $h = \frac{3}{2}D$  c)  $h = \frac{5}{4}D$  d)  $h = 2D$ 

3. A force  $\vec{F} = 2\hat{i} + 2\hat{j}$  N displaces a particle through  $\vec{S} = 2\hat{i} + 2\hat{k}$  m in 16 s. The power developed by  $\vec{F}$  is a) 0.25 | s<sup>-1</sup> b) 25 | s<sup>-1</sup> c) 225 | s<sup>-1</sup> d) 450 | s<sup>-1</sup>

4. A sphere of mass *m* is tied to end of a string of length *l* and rotated through the other end along a horizontal circular path with speed *v*. The work done in full horizontal circle is a) 0  $(mv^2)$   $(mv^2)$ 

b) 
$$\left(\frac{mv^2}{l}\right)$$
.  $2\pi l$  c) mg.  $2\pi$  d)  $\left(\frac{mv^2}{l}\right)$ .  $(l)$ 

- 5. Two projectile are thrown with the same initial velocity at angles  $\alpha$  and  $(90^\circ \alpha)$  with the horizontal. The maximum heights attained by them are  $h_1$  and  $h_2$  respectively. Then  $\frac{h_1}{h_2}$  is equal a)  $\sin^2 \alpha$  b)  $\cos^2 \alpha$  c)  $\tan^2 \alpha$  d) 1
- 6. A particle *P* is at the origin starts with velocity  $\vec{v} = (2\hat{i} 4\hat{j})ms^{-1}$  with constant acceleration  $(3\hat{i} 5\hat{j})ms^{-2}$ . After travelling for 2 s, its distance from the origin is a) 10 m b) 10.2 m c) 9.8 m d) 11.7 m

7. A small sphere is hung by a string fixed to a wall. The sphere is pushed away from the wall by a stick. The force acting on the sphere are shown in figure. Which of the following statements is wrong?



- 8. A particle moves in a circle of radius 30cm. Its liner speed is given by v = 2t, where t is in second and v in ms<sup>-1</sup>. Find out its, radial and tangential acceleration at t = 3s, respectively, a) 220 ms<sup>-2</sup>, 50 ms<sup>-2</sup> b) 100 ms<sup>-2</sup>, 5 ms<sup>-2</sup> c) 120 ms<sup>-2</sup>, 2 ms<sup>-2</sup> d) 110 ms<sup>-2</sup>, 10 ms<sup>-2</sup>
- 9. A small particle of mass *m* is projected at an angle  $\theta$  with the *x*-axis with an initial velocity  $v_0$  in the *x*-*y* plane as shown in the figure. At a time  $t < \frac{v_0 \sin \theta}{g}$ , the angular momentum of the particle



- 10. A body is thrown upward from the earth surface with velocity 5 m/s and from a planet surface with velocity 3 m/s. Both follow the same path. What is the projectile acceleration due to gravity on the planet a)  $2 m/s^2$  b)  $3.5 m/s^2$  c)  $4 m/s^2$  d)  $5 m/s^2$
- 11. An unbanked curve has a radius of 60 m. The maximum speed at which the car make a turn is (Take  $\mu = 0.75$ ) a) 7 ms<sup>-1</sup> b) 14 ms<sup>-1</sup> c) 21 ms<sup>-1</sup> d) 2.1 ms<sup>-1</sup>

12. A fly wheel rotates about a fixed axis and slows down from 300 rpm to 100 rpm in 2 min. Then its angular retardation in rad/min is

a)  $\frac{100}{\pi}$  b) 100 c) 100  $\pi$  d) 200  $\pi$ 

- 13. A particle is projected with a velocity 200 ms<sup>-1</sup> at an angle of 60°. At the highest point, it explodes into three particles of equal masses. One goes vertically upwards with a velocity 100 ms<sup>-1</sup>, the second particle goes vertically downwards. What is the velocity of third particle?
  a) 120 ms<sup>-1</sup> making 60° angle with horizontal b) 200 ms<sup>-1</sup> making 60° angle with horizontal c) 300 ms<sup>-1</sup>
- 14. A car is moving on a circular path and takes a turn. If  $R_1$  and  $R_2$  be the reactions on the inner and outer wheels respectively, then a)  $R_1 = R_2$  b)  $R_1 < R_2$  c)  $R_1 > R_2$  d)  $R_1 \ge R_2$
- 15. If the vector  $\vec{A} = 2\hat{i} + 4\hat{j}$  and  $\vec{B} = 5\hat{i} + p\hat{j}$  are parallel to each other, the magnitude of  $\vec{B}$  is a)  $5\sqrt{5}$  b) 10 c) 15 d)  $2\sqrt{5}$
- 16. A body is revolving with a uniform speed v in a circle of radius r. The tangential acceleration is a)  $\frac{v}{r}$  b)  $\frac{v^2}{r}$  c) Zero d)  $\frac{v}{r^2}$

17. A bridge is in the form of a semi-circle of radius 40 m. The greatest speed with which a motor cycle can cross the bridge without leaving the ground at the highest point is  $(g = 10 \text{ ms}^{-2})$  (frictional force is negligibly small) a) 40 ms<sup>-1</sup> b) 20 ms<sup>-1</sup> c) 30 ms<sup>-1</sup> d) 15 ms<sup>-1</sup>

- 18. A car is moving with high velocity when it has a turn. A force acts on it outwardly because of a) Centripetal force b) Centrifugal force c) Gravitational force d) All the above
- 19. If time of flight of a projectile is 10 seconds. Range is 500 *meters*. The maximum height attained by it will be
  a) 125 m
  b) 50 m
  c) 100 m
  d) 150 m
- 20. A stone is projected with a velocity  $20\sqrt{2}$ ms<sup>-1</sup> at an angle of 45° to the horizontal. The average velocity of stone during its motion from starting point to its maximum height is (g = 10ms<sup>-2</sup>) a)  $5\sqrt{5}$  ms<sup>-1</sup> b)  $10\sqrt{5}$  ms<sup>-1</sup> c) 20 ms<sup>-1</sup> d)  $20\sqrt{5}$  ms<sup>-1</sup>