

Chapter : THERMODYNAMICS

Assignment 2

Class 11

Address: H-81, South Extension Part-1, New Delhi-110049 II <u>www.prernaeducation.co.in</u> II 9205365731

CLASS : XITH DATE : SUBJECT : PHYSICS DPP NO. : 2

Topic :- THERMODYNAMICS

- 1. For an engine operating between $t_1 \,^{\circ}$ C and $t_2 \,^{\circ}$ C, the efficiency will be a) $\frac{t_1}{t_2}$ b) $1 - \frac{t_2}{t_1}$ c) $\frac{t_1 - t_2}{t_2}$
- 2. A thermally insulated vessel contains an ideal gas of molecular mass M and ratio of specific heats γ . It is moving with speed v and is suddenly brought to rest. Assuming no heat is lost to the surroundings, its temperature increases by

a)
$$\frac{(\gamma-1)}{2(\gamma+1)R}Mv^2$$
 b) $\frac{(\gamma-1)}{2\gamma R}Mv^2$ c) $\frac{\gamma Mv^2}{2R}$ d) $\frac{(\gamma-1)}{2R}Mv^2$

- 3. If γ denotes the ratio of two specific heats of a gas, the ratio of slopes of adiabatic and isothermal *PV* curves at their point of intersection is a) $1/\gamma$ b) γ c) $\gamma - 1$ d) $\gamma + 1$
- 4. In the adiabatic compression, the decrease in volume is associated with
 - a) Increase in temperature and decrease in pressure
 - b) Decrease in temperature and increase in pressure
 - c) Decrease in temperature and decrease in pressure
 - d) Increase in temperature and increase in pressure
- 5. When a system is taken from state *i* to state *f* along the path *iaf*, it is found that Q=50 cal and W=20 cal. Along the path *ibf*, Q=36 cal. *W* along the path *ibf* is

6. For an isothermal expansion of a perfect gas, the value of $\frac{\Delta P}{P}$ is equal a) $-\gamma^{1/2} \frac{\Delta V}{V}$ b) $-\frac{\Delta V}{V}$ c) $-\gamma \frac{\Delta V}{V}$ d) $-\gamma^2 \frac{\Delta V}{V}$ 7. During an adiabatic process, the pressure *p* of a fixed mass of an ideal gas changes by Δp and its volume *V* changes ΔV . If $\gamma = C_p/C_v$, then $\Delta V/V$ is given by

a)
$$-\frac{\Delta p}{p}$$
 b) $-\gamma \frac{\Delta p}{p}$ c) $-\frac{\Delta p}{\gamma p}$ d) $-\frac{\Delta p}{\gamma^2 p}$

8. An ideal gas is taken through the cycle $A \rightarrow B \rightarrow C \rightarrow A$ as shown in figure. If the net heat `supplied to the gas in cycle is 5J, work done by the gas in the process $C \rightarrow A$

- a) 0.4 b) 0.625 c) 0.375 d) 0.5
- 10. When a small amount of heat ΔQ is added to an enclosed gas, then increase in internal energy and external work done are related as a) $mC_v\Delta T = Q + p\Delta V$ b) $\Delta Q = mC_v\Delta T + p\Delta V$ c) $mC_v = \Delta Q + p\Delta V$ d) $\Delta Q = mC_p\Delta T + p\Delta V$

11. C_v and C_p denote the molar specific heat capacities of a gas at constant volume and constant

- pressure, respectively. Then
 - a) $C_p C_v$ is larger for a diatomic ideal gas than for a monoatomic ideal gas
 - b) $C_p + C_v$ is larger for a diatomic ideal gas than for a monoatomic ideal gas

c) $\frac{C_p}{C_r}$ is larger for a diatomic ideal gas than for a monoatomic ideal gas

- d) C_p . C_v is larger for a diatomic ideal gas than for a monoatomic ideal gas
- 12. The adiabatic elasticity of hydrogen gas ($\gamma = 1.4$) at NTP is a) $1 \times 10^5 N/m^2$ b) $1 \times 10^{-8} N/m^2$ c) $1.4 N/m^2$ d) $1.4 \times 10^5 N/m^2$
- 13. Which statement is incorrect

9.

- a) All reversible cycles have same efficiency
- b) Reversible cycle has more efficiency than an irreversible one
- c) Carnot cycle is a reversible one
- d) Carnot cycle has the maximum efficiency in all cycles

14. If for hydrogen $C_p - C_v = m$ and for the nitrogen $C_p - C_v = n$, where C_p , C_v refer to specific heats per unit mass respectively at constant pressure and constant volume, the relation between m and n is

a) m = 14 n b) n = 7 n c) m = 7 n d) n = 14 n

- 15. If $\gamma = 2.5$ and volume is equal to $\frac{1}{8}$ times to the initial volume then pressure *P* is equal to (initial pressure = *P*) a) P' = P b) P' = 2P c) $P' = P \times (2)^{15/2}$ d) P' = 7P
- 16. What is the value of sink temperature when efficiency of engine is 100%?a) Zerob) 300 Kc) 273 Kd) 400 K
- 17. One mole of an ideal gas expands adiabatically from an initial temperature T₁ to a final temperature T₂. The work done by the gas would be
 a) (C_p C_v)(T₁ T₂) b) C_p(T₁ T₂) c) C_v(T₁ T₂) d) (C_p C_v)(T₁ + T₂)
- 18. In the indicator diagram T_a , T_b , T_c , T_d represent temperature of gas at A, B, C, D respectively.

b) $T_a \neq T_b \neq T_c \neq T_d$ d) None of these

- 19. A gas for which $\gamma = 1.5$ is suddenly compressed to the $\frac{1}{4}$ th of the initial volume. Then the ratio of the final to the initial pressure is a) 1:6 b) 1:8 c) 1:4 d) 8:1
- 20. *P-V* diagram of an ideal gas is as shown in figure. Work done by the gas in process *ABCD* is $P_{2P_0} = \frac{C}{C_{2P_0}} = \frac{D}{C_{2P_0}}$

$$\begin{array}{c} P_{0} & & \\ \hline B & & A \\ \hline V_{0} & 2V_{0} & 3V_{0} \end{array} \\ \hline a) 4P_{0}V_{0} & & b) 2P_{0}V_{0} \end{array}$$
 c) $3P_{0}V_{0} \\ \end{array}$

 $3P_0V_0$

d) P_0V_0