## PE PRERNA EDUCATION

## Chapter : MECHANICAL PROPERTIES OF FLUIDS

## Assignment 2

## Class 11

CLASS : XITH
SUBJECT : PHYSICS
DATE:
DPP NO. : 2

## Topic :-.MECHANICAL PROPERTIES OF FLUIDS

1. Two communicating vessels contain mercury. The diameter of one vessel is $n$ times larger than the diameter of the other. A column of water of height $h$ is poured into the left vessel. The mercury level will rise in the right-hand vessel ( $s=$ relative density of mercury and $\rho=$ density

a) $\frac{n^{2} h}{(n+1)^{2} s}$
b) $\frac{h}{\left(n^{2}+1\right) s}$
c) $\frac{h}{(n+1)^{2} s}$
d) $\frac{h}{n^{2} s}$
2. A ball of radius $r$ and density $\rho$ falls freely under gravity through a distance $h$ before entering water. Velocity of ball does not change even on entering wate $r$. If viscosity of water is $\eta$, the value of $h$ is given by

a) $\frac{2}{9} r^{2}\left(\frac{1-\rho}{\eta}\right) g$
b) $\frac{2}{81} r^{2}\left(\frac{\rho-1}{\eta}\right) g$
c) $\frac{2}{81} r^{4}\left(\frac{\rho-1}{\eta}\right)^{2} g$
d) $\frac{2}{9} r^{4}\left(\frac{\rho-1}{\eta}\right)^{2} g$
3. A solid of density $D$ is floating in a liquid of densityd. If $v$ is the volume of solid submerged in the liquid and $V$ is the total volume of the solid, then $v / V$ is equal to
a) $\frac{d}{P}$
b) $\frac{D}{d}$
c) $\frac{D}{(D+d)}$
d) $\frac{D+d}{D}$
4. A liquid flows in a tube from left to right as shown in figure $A_{1}$ and $A_{2}$ are the cross-sections of the portions of the tube as shown. Then the ratio of speeds $v_{1} / v_{2}$ will be

a) $A_{1} / A_{2}$
b) $A_{2} / A_{1}$
c) $\sqrt{A_{2}} / \sqrt{A_{1}}$
d) $\sqrt{A_{1}} / \sqrt{A_{2}}$
5. From a steel wire of density $\rho$ is suspended a brass block of density $\rho_{B}$. The extension of steel wire comes to $l$. If the brass block is now fully immersed in a liquid of density $\rho_{L}$, the extension becomes $l^{\prime}$. The ratio $l / l^{\prime}$ will be
a) $\frac{\rho_{B}-\rho}{\rho_{L}-\rho}$
b) $\frac{\rho_{L}}{\rho_{B}-\rho_{L}}$
c) $\frac{\rho_{B}-\rho_{L}}{\rho_{B}}$
d) $\frac{\rho_{B}}{\rho_{B}-\rho_{L}}$
6. The excess pressure inside a spherical drop of radius $r$ of a liquid of surface tension $T$ is
a) Directly proportional to $r$ and inversely proportional to $T$
b) Directly proportional to $T$ and inversely proportional to $r$
c) Directly proportional to the product of $T$ and $r$
d) Inversely proportional to the product of $T$ and $r$
7. A siphon in use is demonstrated in the following figure. The density of the liquid flowing in siphon is $1.5 \mathrm{gm} / c c$. The pressure difference between the point $P$ and $S$ will be

a) $10^{5} \mathrm{~N} / \mathrm{m}$
b) $2 \times 10^{5} \mathrm{~N} / \mathrm{m}$
c) Zero
d) Infinity
8. A hole in the bottom of the tank having water. If total pressure at bottom is $3 \mathrm{~atm}(1 \mathrm{~atm}=$ $10^{5} \mathrm{Nm}^{-2}$ ), then velocity of water flowing from hole is
a) $\sqrt{400} \mathrm{~ms}^{-1}$
b) $\sqrt{600} \mathrm{~ms}^{-1}$
c) $\sqrt{60} \mathrm{~ms}^{-1}$
d) None of these
9. A large tank filled with water to a height $h$ is to be emptied through a small hole at the bottom. The ratio of times taken for the level of water to fall from $h$ to $h / 2$ and $h / 2$ to zero is
a) $\sqrt{2}$
b) $\frac{1}{\sqrt{2}}$
c) $\sqrt{2}-1$
d) $\frac{1}{\sqrt{2-1}}$
10. A block of steel of size $5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}$ is weighed in water. If the relative density of steel is 7, its apparent weight is
a) $6 \times 5 \times 5 \times 5 \mathrm{gf}$
b) $4 \times 4 \times 4 \times 7 \mathrm{gf}$
c) $5 \times 5 \times 5 \times 7 \mathrm{gf}$
d) $4 \times 4 \times 4 \times 6 \mathrm{gf}$
11. There are two holes one each along the opposite sides of a wide rectangular tank. The crosssection of each hole is $0.01 \mathrm{~m}^{2}$ and the vertical distance between the holes is one meter. The tank is filled with water flows out of the holes is (density of water $=1000 \mathrm{kgm}^{-3}$ )
a) 100
b) 200
c) 300
d) 400
12. Water in river 20 m deep is flowing at a speed of $10 \mathrm{~ms}^{-1}$. The shearing stress between the horizontal layers of water in the river in $\mathrm{Nm}^{-2}$ is (coefficient of viscosity of water $=10^{-3} \mathrm{SI}$ units)
a) $1 \times 10^{-2} \mathrm{Nm}^{-2}$
b) $0.5 \times 10^{-2} \mathrm{Nm}^{-2}$
c) $1 \times 10^{-3} \mathrm{Nm}^{-2}$
d) $0.5 \times 10^{-3} \mathrm{Nm}^{-2}$
13. Ice pieces are floating in beaker $A$ containing water also in a beaker $B$ containing miscible liquid of specific gravity 1.2 . When ice melts, the level of
a) water increases in $A$
b) water decreases in $A$
c) liquid in $B$ decreases
d) liquid in $B$ increases
14. On the surface of the liquid in equilibrium, molecules of the liquid possess
a) maximum potential energy
b) maximum potential energy
c) maximum kinetic energy
d) minimum kinetic energy
15. Water flowing out of the mouth of a tap and falling vertically in streamline flow forms a tapering column, $i e$ the area of cross-section of the liquid column decreases as it moves down. Which of the following is the most accurate explanation for this?

a) Falling water tries to reach a terminal velocity and hence, reduces the area of cross-section to balance upward and downward forces
b) As the water moves down, its speed increases and hence, its pressure decreases. It is then compressed by atmosphere
c) The surface tension causes the exposed surface area of the liquid to decrease continuously The mass of water flowing out per second through any cross-section must remain constant.
d) As the water is almost incompressible, so the volume of water flowing out per second must remain constant. As this is equal to velocity $\times$ area, the area decreases as velocity increases
16. Speed of 2 cm radius ball in a viscous liquid is $20 \mathrm{cms}^{-1}$. Then the speed of 1 cm radius ball in the same liquid is
a) $5 \mathrm{cms}^{-1}$
b) $10 \mathrm{cms}^{-1}$
c) $40 \mathrm{cms}^{-1}$
d) $80 \mathrm{cms}^{-1}$
17. The fraction of a floating object of volume $V_{0}$ and density $d_{0}$ above the surface of a liquid of density $d$ will be
a) $\frac{d_{0}}{d}$
b) $\frac{d d_{0}}{d+d_{0}}$
c) $\frac{d-d_{0}}{d}$
d) $\frac{d d_{0}}{d-d_{0}}$
18. A piece of ice is floating in a jar containing water. When the ice melts, then the level of water
a) rises
b) Falls
c) remains unchanged d) rises or falls
19. A cork is submerged in water by a spring attached to the bottom of a bowl. When the bowl is kept in an elevator moving with acceleration downwards, the length of spring
a) Increases
b) Decreases
c) Remains unchanged d) None of these
20. A body of density $d_{1}$ is counterpoised by $M g$ of weights of density $d_{2}$ in air of density $d$. Then the true mass of the body is
a) $M$
b) $M\left(1-\frac{d}{d_{2}}\right)$
c) $M\left(1-\frac{d}{d_{1}}\right)$
d) $\frac{M\left(1-d / d_{2}\right)}{\left(1-d / d_{1}\right)}$
