

Chapter : <u>MECHANICAL PROPERTIES OF FLUIDS</u>

Assignment 2

Class 11

Address: H-81, South Extension Part-1, New Delhi-110049 II www.prernaeducation.co.in II 9205365731

1. Two communicating vessels contain mercury. The diameter of one vessel is *n* times larger than the diameter of the other. A column of water of height *h* is poured into the left vessel. The mercury level will rise in the right-hand vessel (*s* = relative density of mercury and ρ = density

2. A ball of radius r and density ρ falls freely under gravity through a distance h before entering water. Velocity of ball does not change even on entering wate r. If viscosity of water is η , the value of h is given by

a)
$$\frac{2}{9}r^{2}\left(\frac{1-\rho}{\eta}\right)g$$
 b) $\frac{2}{81}r^{2}\left(\frac{\rho-1}{\eta}\right)g$ c) $\frac{2}{81}r^{4}\left(\frac{\rho-1}{\eta}\right)^{2}g$ d) $\frac{2}{9}r^{4}\left(\frac{\rho-1}{\eta}\right)^{2}g$

3. A solid of density *D* is floating in a liquid of density *d*. If *v* is the volume of solid submerged in the liquid and *V* is the total volume of the solid, then v/V is equal to

a)
$$\frac{d}{p}$$
 b) $\frac{D}{d}$ c) $\frac{D}{(D+d)}$ d) $\frac{D+d}{D}$

4. A liquid flows in a tube from left to right as shown in figure A_1 and A_2 are the cross-sections of the portions of the tube as shown. Then the ratio of speeds v_1/v_2 will be

5. From a steel wire of density ρ is suspended a brass block of density ρ_B . The extension of steel wire comes to *l*. If the brass block is now fully immersed in a liquid of density ρ_L , the extension becomes *l'*. The ratio l/l' will be

d) $\frac{\rho_B}{\rho_B - \rho_I}$

a)
$$\frac{\rho_B - \rho}{\rho_L - \rho}$$
 b) $\frac{\rho_L}{\rho_B - \rho_L}$ c) $\frac{\rho_B - \rho_L}{\rho_B}$

- 6. The excess pressure inside a spherical drop of radius *r* of a liquid of surface tension *T* isa) Directly proportional to *r* and inversely proportional to *T*
 - b) Directly proportional to T and inversely proportional to r
 - c) Directly proportional to the product of $T \, {\rm and} \, r$
 - d) Inversely proportional to the product of $T \, {\rm and} \, r$
- 7. A siphon in use is demonstrated in the following figure. The density of the liquid flowing in siphon is 1.5 gm/cc. The pressure difference between the point *P* and *S* will be

- 8. A hole in the bottom of the tank having water. If total pressure at bottom is 3 atm (1 atm = 10^5 Nm^{-2}), then velocity of water flowing from hole is
 - a) $\sqrt{400}$ ms⁻¹ b) $\sqrt{600}$ ms⁻¹ c) $\sqrt{60}$ ms⁻¹ d) None of these
- 9. A large tank filled with water to a height h is to be emptied through a small hole at the bottom. The ratio of times taken for the level of water to fall from h to h/2 and h/2 to zero is

a)
$$\sqrt{2}$$
 b) $\frac{1}{\sqrt{2}}$ c) $\sqrt{2} - 1$ d) $\frac{1}{\sqrt{2-1}}$

- 10. A block of steel of size 5 cm × 5 cm × 5 cm is weighed in water. If the relative density of steel is 7, its apparent weight is
 a) 6 × 5 × 5 × 5 gf
 b) 4 × 4 × 4 × 7 gf
 c) 5 × 5 × 5 × 7 gf
 d) 4 × 4 × 4 × 6 gf
- 11. There are two holes one each along the opposite sides of a wide rectangular tank. The cross-
section of each hole is $0.01m^2$ and the vertical distance between the holes is one meter. The
tank is filled with water flows out of the holes is (density of water= 1000 kgm^{-3})
a) 100b) 200c) 300d) 400
- 12. Water in river 20 m deep is flowing at a speed of 10 ms⁻¹. The shearing stress between the horizontal layers of water in the river in N m⁻² is (coefficient of viscosity of water = 10^{-3} SI units) a) 1×10^{-2} Nm⁻² b) 0.5×10^{-2} Nm⁻² c) 1×10^{-3} Nm⁻² d) 0.5×10^{-3} Nm⁻²

13. Ice pieces are floating in beaker A containing water also in a beaker B containing miscible liquid of specific gravity 1.2. When ice melts, the level of

a) water increases in A
b) water decreases in A
c) liquid in B decreases
d) liquid in B increases

- 14. On the surface of the liquid in equilibrium, molecules of the liquid possess
 a) maximum potential energy
 b) maximum potential energy
 c) maximum kinetic energy
 d) minimum kinetic energy
- 15. Water flowing out of the mouth of a tap and falling vertically in streamline flow forms a tapering column, *ie* the area of cross-section of the liquid column decreases as it moves down. Which of the following is the most accurate explanation for this?

- a) Falling water tries to reach a terminal velocity and hence, reduces the area of cross-section to balance upward and downward forces
- b) As the water moves down, its speed increases and hence, its pressure decreases. It is then compressed by atmosphere
- c) The surface tension causes the exposed surface area of the liquid to decrease continuously The mass of water flowing out per second through any cross-section must remain constant.
- d) As the water is almost incompressible, so the volume of water flowing out per second must remain constant. As this is equal to velocity × area, the area decreases as velocity increases
- 16. Speed of 2 cm radius ball in a viscous liquid is 20 cms⁻¹. Then the speed of 1 cm radius ball in the same liquid is

a) 5 cms^{-1} b) 10 cms^{-1} c) 40 cms^{-1} d) 80 cms^{-1}

17. The fraction of a floating object of volume V_0 and density d_0 above the surface of a liquid of density d will be

a) $\frac{d_0}{d}$ b) $\frac{dd_0}{d+d_0}$ c) $\frac{d-d_0}{d}$ d) $\frac{dd_0}{d-d_0}$

- 18. A piece of ice is floating in a jar containing water. When the ice melts, then the level of watera) risesb) Fallsc) remains unchanged d) rises or falls
- 19. A cork is submerged in water by a spring attached to the bottom of a bowl. When the bowl is kept in an elevator moving with acceleration downwards, the length of springa) Increasesb) Decreasesc) Remains unchangedd) None of these
- 20. A body of density d_1 is counterpoised by Mg of weights of density d_2 in air of density d. Then the true mass of the body is

a)
$$M$$
 b) $M\left(1-\frac{d}{d_2}\right)$ c) $M\left(1-\frac{d}{d_1}\right)$ d) $\frac{M(1-d/d_2)}{(1-d/d_1)}$