

Chapter: WAVES

Assignment 2

Class 11

Address: H-81, South Extension Part-1, New Delhi-110049 II www.prernaeducation.co.in II 9205365731

CLASS : XITH DATE : SUBJECT : PHYSICS DPP NO. :2

Topic :- WAVES						
Which of the followi a) Lion	ng has high pitch in the b) Mosquito	initiation in the initiation in the initiation initiation in the initiation initiatio initiatio initiatio initiatio init	d) Woman			
a) Increases b) Decreases c) Remains same						
The type of waves th a) Transverse	nat can be propagated t b) Longitudinal	hrough solid is c) Both (a) and (b)	d) None of these			
			5			
A pipe open at both ends produces a note of frequency f_1 . When the pipe is kept with $\frac{3}{4}th$ of its length in water, it produced a note of frequency f_2 . The ratio $\frac{f_1}{f_2}$ is						
a) $\frac{3}{4}$	b) $\frac{4}{3}$	c) $\frac{1}{2}$	d) 2			
			-			
 A long cylindrical tube carries a highly polished piston and has a side opening. A tuning fork of frequency n is sounded at the sound heard by the listener charges if the piston is moves in or out. At a particular position of the piston is moved through a distance of 9 cm, the intensity of sound becomes minimum, if the speed of sound is 360 m/s, the value of n is 						
	a) Lion When temperature i a) Increases b) Decreases c) Remains same d) Increases or decreation The type of waves the a) Transverse The equation of statt where x and y are in a) 6 cm A pipe open at both length in water, it pr a) $\frac{3}{4}$ The source of sound times, the velocity of a) 1 kHz A long cylindrication of frequency n is in or out. At a participation Pictor	a) Lion b) Mosquito When temperature increases, the frequency a) Increases b) Decreases c) Remains same d) Increases or decreases depending on the The type of waves that can be propagated t a) Transverse b) Longitudinal The equation of stationary wave along a str where x and y are in centimetre and t in se a) 6 cm b) 4 cm A pipe open at both ends produces a note o length in water, it produced a note of frequency times, the velocity of sound in air. The frequency a) 1 kHz b) 2 kHz A long cylindrical tube carries a highly p of frequency n is sounded at the sound F in or out. At a particular position of the p intensity of sound becomes minimum, iff $\Psi \prod_{\text{Listener}}^{\text{Listener}}$	When temperature increases, the frequency of a tuning fork a) Increases b) Decreases c) Remains same d) Increases or decreases depending on thematerial The type of waves that can be propagated through solid is a) Transverse b) Longitudinal c) Both (a) and (b) The equation of stationary wave along a stretched string is given by y where x and y are in centimetre and t in second. The separation betw a) 6 cm b) 4 cm c) 3 cm A pipe open at both ends produces a note of frequency f_1 . When the p length in water, it produced a note of frequency f_2 . The ratio $\frac{f_1}{f_2}$ is a) $\frac{3}{4}$ b) $\frac{4}{3}$ c) $\frac{1}{2}$ The source of sound generating a frequency of 3kHz reaches an observentimes, the velocity of sound in air. The frequency heard by the observent a) 1 kHz b) 2 kHz c) 4 kHz A long cylindrical tube carries a highly polished piston and has a s of frequency n is sounded at the sound heard by the listener charge in or out. At a particular position of the piston is moved through a intensity of sound becomes minimum, if the speed of sound is 360 $\Psi \prod_{\text{Listener}}^{\text{Piston}}$			

- 8. n_1 Is the frequency of the pipe closed at one end and n_2 is the frequency of the pipe open at both ends. If both are joined end to end, find the fundamental frequency of closed pipe so formed a) $\frac{n_1 n_2}{n_2 + 2n_1}$ c) $\frac{n_1 + 2n_2}{n_2 n_1}$ d) $\frac{2n_1+n_2}{n_2n_1}$ b) $\frac{n_1n_2}{2n_2+n_4}$ 9. Two sounding bodies producing progressive waves are given by $y_1 = 4 \sin 400\pi t$ and $y_2 =$ $3 \sin 404\pi t$ one situated very near to the ear of a person who will hear a) 2 beats/s with intensity ratio 4/3 between maxima and minima b) 2 beats/s with intensity ratio 49/1 between maxima and minima c) 4 beats/s with intensity ratio 4/3 between maxima and minima d) 4 beats/s with intensity ratio 4/3 between maxima and minima 10. In two similar wires of tension 16 N and T, 3 beats are heard, then T= d) None of these a) 49 N b)25 N c) 64 N 11. An observer is moving towards the stationary source of sound, then a) Apparent frequency will be less than the real frequency b) Apparent frequency will be greater than the real frequency c) Apparent frequency will be equal to real frequency d) Only the quality of sound will charge 12. The disc of a siren containing 60 holes rotates at a constant speed of 360 rpm. The emitted sound is in unison with a tuning fork of frequency a) 10 Hz b) 360 Hz c) 216 Hz d) 60 Hz 13. Consider the three waves, z_1 , z_2 and z_3 as $z_1 = A\sin(kx - \omega t)$ $z_2 = A\sin(kx + \omega t)$ $z_3 = A\sin(kx - \omega t)$ Which of the following represent a standing wave? c) $z_3 + z_1$ d) $z_1 + z_2 + z_3$ b) $z_2 + z_3$ a) $z_1 + z_2$
- 14. The apparent frequency of the whistle of an engine changes in the ratio 9:8 as the engine passes a stationary observer. If the velocity of the sound is 340ms⁻¹, then the velocity of the engine is
 14. The apparent frequency of the whistle of an engine is
 14. The apparent frequency of the whistle of an engine is
 14. The apparent frequency of the whistle of an engine is
 14. The apparent frequency of the whistle of an engine is
 14. The apparent frequency of the whistle of an engine is
 14. The apparent frequency of the whistle of an engine is

a)
$$40 \text{ ms}^{-1}$$
 b) 20 ms^{-1} c) 340 ms^{-1} d) 180 ms^{-1}

15. Equation of a progressive wave is given by $y = 4 \sin \left\{ \pi \left(\frac{t}{5} - \frac{x}{9} \right) + \frac{\pi}{6} \right\}$ Then which of the following is correct a) v = 5m/sec b) $\lambda = 18m$ c) a = 0.04 m d) n = 50 Hz

16.	An underwater sonar source operating at a frequency of 60 kHz directs its beam towards the surface. If the velocity of sound in air is 330 m/s , the wavelength and frequency of waves in air are:						
	a) 5.5 <i>mm</i> , 60 <i>kHz</i>	b) 330 m, 60 kHz	c) 5.5 <i>mm</i> , 20 <i>kHz</i>	d) 5.5 <i>mm</i> , 80 <i>kHz</i>			
17.	7. Frequency range of the audible sounds is						
		b) 20 <i>Hz</i> – 20 <i>kHz</i> c)	20 <i>kHz</i> – 20,000 <i>kHz</i>	d) 20 <i>kHz</i> – 20 <i>MHz</i>			
18.	18. If at same temperature and pressure, the densities for two diatomic gases are respectively d_1 and d_2 , then the ratio of velocities of sound in these gases will be						
	a) $\sqrt{\frac{d_2}{d_1}}$	b) $\sqrt{\frac{d_1}{d_2}}$	c) $d_1 d_2$	d) $\sqrt{d_1 d_2}$			
19.	. A man fires a bullet standing between two cliffs. First echo is heard after 3 seconds and second echo is heard after 5 seconds. If the velocity of sound is $330 m/s$, then the distance between the cliffs is						
	a) 1650 <i>m</i>	b) 1320 m	c) 990 m	d)660 m			
20.	Unlike a laboratory sonometer, a stringed instrument is seldom plucked in the middle.						
	Supposing a sitar string is plucked at about $\frac{1}{4}th$ of its length from the end. The most prominent						
	harmonic would be						
	a) Eighth	b) Fourth	c) Third	d) Second			